1.Sensors lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
2.Communication and Computing Systems Lab, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
3.Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA 92612, USA
4.Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
5.Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
6.Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
Khaled N. Salama (khaled.salama@kaust.edu.sa)
纸质出版日期:2022-01-31,
网络出版日期:2022-01-01,
收稿日期:2021-04-29,
修回日期:2021-11-06,
录用日期:2021-11-23
Scan QR Code
A flexible capacitive photoreceptor for the biomimetic retina[J]. LSA, 2022,11(1):38-49.
Vijjapu, M. T. et al. A flexible capacitive photoreceptor for the biomimetic retina. Light: Science & Applications, 11, 38-49 (2022).
A flexible capacitive photoreceptor for the biomimetic retina[J]. LSA, 2022,11(1):38-49. DOI: 10.1038/s41377-021-00686-4.
Vijjapu, M. T. et al. A flexible capacitive photoreceptor for the biomimetic retina. Light: Science & Applications, 11, 38-49 (2022). DOI: 10.1038/s41377-021-00686-4.
Neuromorphic vision sensors have been extremely beneficial in developing energy-efficient intelligent systems for robotics and privacy-preserving security applications. There is a dire need for devices to mimic the retina's photoreceptors that encode the light illumination into a sequence of spikes to develop such sensors. Herein
we develop a hybrid perovskite-based flexible photoreceptor whose capacitance changes proportionally to the light intensity mimicking the retina's rod cells
paving the way for developing an efficient artificial retina network. The proposed device constitutes a hybrid nanocomposite of perovskites (methyl-ammonium lead bromide) and the ferroelectric terpolymer (polyvinylidene fluoride trifluoroethylene-chlorofluoroethylene). A metal-insulator-metal type capacitor with the prepared composite exhibits the unique and photosensitive capacitive behavior at various light intensities in the visible light spectrum. The proposed photoreceptor mimics the spectral sensitivity curve of human photopic vision. The hybrid nanocomposite is stable in ambient air for 129 weeks
with no observable degradation of the composite due to the encapsulation of hybrid perovskites in the hydrophobic polymer. The functionality of the proposed photoreceptor to recognize handwritten digits (MNIST) dataset using an unsupervised trained spiking neural network with 72.05% recognition accuracy is demonstrated. This demonstration proves the potential of the proposed sensor for neuromorphic vision applications.
Kim, Y. et al. Nociceptive memristor.Adv. Mater.30, 1704320 (2018)..
Tuma, T. et al. Stochastic phase-change neurons.Nat. Nanotechnol.11, 693-699 (2016)..
Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina.Nature581, 278-282 (2020)..
Zhang, K. et al. Origami silicon optoelectronics for hemispherical electronic eye systems.Nat. Commun.8, 1782 (2017)..
Pocock, D. C. D. Sight and knowledge.Trans. Inst. Br. Geographers6, 385-393 (1981)..
Balasubramanian, V.&Sterling, P. Receptive fields and functional architecture in the retina.J. Physiol.587, 2753-2767 (2009)..
Rakshit, T.&Park, P. S. H. Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes.Biochemistry54, 2885-2894 (2015)..
Chai, Y. In-sensor computing for machine vision.Nature579, 32-33 (2020)..
Bao, L. et al. Artificial shape perception retina network based on tunable memristive neurons.Sci. Rep.8, 13727 (2018)..
Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors.Nature579, 62-66 (2020)..
Lichtsteiner, P., Posch, C.&Delbruck, T. A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor.IEEE J. Solid-State Circuits43, 566-576 (2008)..
Krestinskaya, O., Salama, K. N.&James, A. P. Automating analogue AI chip design with genetic search.Adv. Intell. Syst.2, 2000075 (2020)..
Krestinskaya, O., Salama, K. N.&James, A. P. Analog backpropagation learning circuits for memristive crossbar neural networks. InProceedings of 2018 IEEE International Symposium on Circuits and Systems1−5 (IEEE, Florence, 2018).
Krestinskaya, O., Salama, K. N.&James, A. P. Learning in memristive neural network architectures using analog backpropagation circuits.IEEE Trans. Circuits Syst. I: Regul. Pap.66, 719-732 (2019)..
Wang, Z. R. et al. Capacitive neural network with neuro-transistors.Nat. Commun.9, 3208 (2018)..
Kholkin, A. L., Iakovlev, S. O.&Baptista, J. L. Direct effect of illumination on ferroelectric properties of lead zirconate titanate thin films.Appl. Phys. Lett.79, 2055-2057 (2001)..
Lee, J. et al. Effect of ultraviolet light on fatigue of lead zirconate titanate thin‐film capacitors.Appl. Phys. Lett.65, 254-256 (1994)..
Poosanaas, P., Tonooka, K.&Uchino, K. Photostrictive actuators.Mechatronics10, 467-487 (2000)..
Miyasaka, T.&Murakami, T. N. The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy.Appl. Phys. Lett.85, 3932-3934 (2004)..
Mokni, M. et al. High-capacity, fast-response, and photocapacitor-based terpolymer phosphor composite.Polymers12, 349 (2020)..
Lee, H. et al. Strong photo-amplification effects in flexible organic capacitors with small molecular solid-state electrolyte layers sandwiched between photo-sensitive conjugated polymer nanolayers.Sci. Rep.6, 19527 (2016)..
Zhang, L. Y. et al. Light enhanced energy storage ability through a hybrid plasmonic Ag nanowire decorated hydroxide "skin structure".Nanoscale9, 18430-18437 (2017)..
Al-Amri, A. M., Cheng, B.&He, J. H. Perovskite methylammonium lead trihalide heterostructures: progress and challenges.IEEE Trans. Nanotechnol.18, 1-12 (2019)..
Zhou, J. C., Chu, Y. L.&Huang, J. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors.ACS Appl. Mater. Interfaces8, 25660-25666 (2016)..
Lin, C. H. et al. Giant optical anisotropy of perovskite nanowire array films.Adv. Funct. Mater.30, 1909275 (2020)..
Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals.Science347, 519-522 (2015)..
Stoumpos, C. C.&Kanatzidis, M. G. Halide perovskites: poor man's high-performance semiconductors.Adv. Mater.28, 5778-5793 (2016)..
Lin, C. H. et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices.ACS Nano13, 1168-1176 (2019)..
Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells.Nature517, 476-480 (2015)..
Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science338, 643-647 (2012)..
Lee, C. P. et al. A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells.Nano Energy36, 260-267 (2017)..
Hwang, K. et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells.Adv. Mater.27, 1241-1247 (2015)..
Leung, S. F. et al. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity.Adv. Mater.30, 1704611 (2018)..
Alamri, A. M. et al. Fully inkjet-printed photodetector using a graphene/perovskite/graphene heterostructure.IEEE Trans. Electron Devices66, 2657-2661 (2019)..
Kang, C. H. et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication.Light. : Sci. Appl.8, 94 (2019)..
Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors.Nat. Commun.6, 8238 (2015)..
Li, Y. T. et al. Millimeter-scale nonlocal photo-sensing based on single-crystal perovskite photodetector.iScience7, 110-119 (2018)..
Xing, G. C. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing.Nat. Mater.13, 476-480 (2014)..
Lin, C. H. et al. Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability.Nano Energy73, 104801 (2020)..
Liu, Z. J. et al. Micro-light-emitting diodes with quantum dots in display technology.Light. : Sci. Appl.9, 83 (2020)..
Ruan, L. X. et al. Properties and applications of the β phase poly (vinylidene fluoride).Polymers10, 228 (2018)..
Agambayev, A. et al. Ferroelectric fractional-order capacitors.ChemElectroChem4, 2807-2813 (2017)..
Elshurafa, A. M. et al. Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites.Appl. Phys. Lett.102, 232901 (2013)..
Sultana, A. et al. Organo-lead halide perovskite induced electroactive β-phase in porous PVDF films: an excellent material for photoactive piezoelectric energy harvester and photodetector.ACS Appl. Mater. Interfaces10, 4121-4130 (2018)..
Yuan, Y. B. et al. Efficiency enhancement in organic solar cells with ferroelectric polymers.Nat. Mater.10, 296-302 (2011)..
Tsutsumi, N. et al. Re-evaluation of the origin of relaxor ferroelectricity in vinylidene fluoride terpolymers: an approach using switching current measurements.Sci. Rep.7, 15871 (2017)..
Liu, Y. et al. Relaxor ferroelectric polymers: insight into high electrical energy storage properties from a molecular perspective.Small Sci.1, 2000061 (2021)..
Chu, B. J. et al. A dielectric polymer with high electric energy density and fast discharge speed.Science313, 334-336 (2006)..
Christoe, M. J., Han, J. L.&Kalantar-Zadeh, K. Telecommunications and data processing in flexible electronic systems.Adv. Mater. Technol.5, 1900733 (2020)..
Christoe, M. J. et al. Bluetooth signal attenuation analysis in human body tissue analogues.IEEE Access9, 85144-85150 (2021)..
Priante, D. et al. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites.Appl. Phys. Lett.106, 081902 (2015)..
Agambayev, A. et al. Tunable fractional-order capacitor using layered ferroelectric polymers.AIP Adv.7, 095202 (2017)..
Debnath, T. et al. Halide perovskite solar cells with biocompatibility.Adv. Energy Sustain. Res.1, 2000028 (2020)..
Sabira, K. et al. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films.Opt. Laser Technol.97, 77-83 (2017)..
Agambayev, A. et al. An ultra-broadband single-component fractional-order capacitor using MoS2-ferroelectric polymer composite.Appl. Phys. Lett.113, 093505 (2018)..
Agambayev, A. et al. Towards fractional-order capacitors with broad tunable constant phase angles: multi-walled carbon nanotube-polymer composite as a case study.J. Phys. D: Appl. Phys.51, 065602 (2018)..
Kartci, A. et al. Synthesis and optimization of fractional-order elements using a genetic algorithm.IEEE Access7, 80233-80246 (2019)..
Gentet, L. J., Stuart, G. J.&Clements, J. D. Direct measurement of specific membrane capacitance in neurons.Biophys. J.79, 314-320 (2000)..
He, J. et al. Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions.Sol. Energy188, 312-317 (2019)..
Fan, H. W. et al. Preparation and characterization of hydrophobic PVDF membranes by vapor-induced phase separation and application in vacuum membrane distillation.J. Polym. Res.20, 134 (2013)..
Zhang, S. et al. PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance.Sol. Energy Mater. Sol. Cells170, 178-186 (2017)..
Wang, Q. et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells.Adv. Mater.28, 6734-6739 (2016)..
Cuthbertson, F. M. et al. Blue light-filtering intraocular lenses: review of potential benefits and side effects.J. Cataract Refractive Surg.35, 1281-1297 (2009)..
Kuku, T. A. Ionic transport and galvanic cell discharge characteristics of CuPbI3 thin films.Thin Solid Films325, 246-250 (1998)..
Kuku, T. A.&Salau, A. M. Electrical conductivity of CuSnI3, CuPbI3, and KPbI3.Solid State Ion.25, 1-7 (1987)..
Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface.Science345, 668-673 (2014)..
Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning.IEEE Micro38, 82-99 (2018)..
Maheswaranathan, N. et al. Deep learning models reveal internal structure and diverse computations in the retina under natural scenes. Preprint atbioRxivhttps://doi.org/10.1101/340943https://doi.org/10.1101/340943(2018)..
Masquelier, T.&Thorpe, S. J. Unsupervised learning of visual features through spike timing dependent plasticity.PLoS Comput. Biol.3, e31 (2007)..
Guo, W. Z. et al. Unsupervised adaptive weight pruning for energy-efficient neuromorphic systems.Front. Neurosci.14, 598876 (2020)..
Diehl, P. U.&Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity.Front. Comput. Neurosci.9, 99 (2015)..
Zenke, F.&Ganguli, S. SuperSpike: supervised learning in multilayer spiking neural networks.Neural Comput.30, 1514-1541 (2018)..
Kaiser, J., Mostafa, H.&Neftci, E. Synaptic plasticity dynamics for deep continuous local learning (DECOLLE).Front. Neurosci.14, 424 (2020)..
Ghoneim, M. T. et al. Thin PZT-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications.Adv. Electron. Mater.1, 1500045 (2015)..
Ghoneim, M. T. et al. Towards neuromorphic electronics: memristors on foldable silicon fabric.Microelectron. J.45, 1392-1395 (2014)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构