1.Institute of Nanophotonics, Jinan University, 511443 Guangzhou, China
2.Department of Physiology, School of Medicine, Jinan University, 510632 Guangzhou, China
3.CNR-ISASI, Institute of Applied Sciences and Intelligent Systems «E. Caianiello», Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
Yao Zhang (zhyao5@jnu.edu.cn)
Yuchao Li (liyuchao@jnu.edu.cn)
Pietro Ferraro (pietro.ferraro@cnr.it)
Baojun Li (baojunli@jnu.edu.cn)
纸质出版日期:2021-12-31,
网络出版日期:2021-12-06,
收稿日期:2021-06-27,
修回日期:2021-10-31,
录用日期:2021-11-23
Scan QR Code
Lipid droplets as endogenous intracellular microlenses[J]. LSA, 2021,10(12):2507-2517.
Chen, X. X. et al. Lipid droplets as endogenous intracellular microlenses. Light: Science & Applications, 10, 2507-2517 (2021).
Lipid droplets as endogenous intracellular microlenses[J]. LSA, 2021,10(12):2507-2517. DOI: 10.1038/s41377-021-00687-3.
Chen, X. X. et al. Lipid droplets as endogenous intracellular microlenses. Light: Science & Applications, 10, 2507-2517 (2021). DOI: 10.1038/s41377-021-00687-3.
Using a single biological element as a photonic component with well-defined features has become a new intriguing paradigm in biophotonics. Here we show that endogenous lipid droplets in the mature adipose cells can behave as fully biocompatible microlenses to strengthen the ability of microscopic imaging as well as detecting intra- and extracellular signals. By the assistance of biolenses made of the lipid droplets
enhanced fluorescence imaging of cytoskeleton
lysosomes
and adenoviruses has been achieved. At the same time
we demonstrated that the required excitation power can be reduced by up to 73%. The lipidic microlenses are finely manipulated by optical tweezers in order to address targets and perform their real-time imaging inside the cells. An efficient detecting of fluorescence signal of cancer cells in extracellular fluid was accomplished due to the focusing effect of incident light by the lipid droplets. The lipid droplets acting as endogenous intracellular microlenses open the intriguing route for a multifunctional biocompatible optics tool for biosensing
endoscopic imaging
and single-cell diagnosis.
Peng, H. C. Bioimage informatics: a new area of engineering biology.Bioinformatics24, 1827–1836 (2008)..
Kasban, H., El-Bendary, M. A. M.&Salama, D. H. A comparative study of medical imaging techniques.Int. J. Inf. Sci. Intell. Syst.4, 37–58 (2015)..
Eggeling, C. Advances in bioimaging-challenges and potentials.J. Phys. D: Appl. Phys.51, 040201 (2018)..
Pierce, D. W.&Vale, R. D. Single-molecule fluorescence detection of green fluorescence protein and application to single-protein dynamics.Methods Cell Biol.58, 49–73 (1998)..
Derfus, A. M., Chan, W. C. W.&Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots.Nano Lett.4, 11–18 (2004)..
Diaspro, A. et al.Photobleaching. in Handbook of Biological Confocal Microscopy5th edn (ed Pawley, J. B. ) Ch. 39, 690–702 (Springer, 2006).
Calabuig, A. et al. Investigating fibroblast cells under "safe" and "injurious" blue-light exposure by holographic microscopy.J. Biophotonics10, 919–927 (2017)..
Chen, L. W. et al. Microsphere-toward future of optical microscopes.iScience23, 101211 (2021)..
Huang, B., Babcock, H.&Zhuang, X. W. Breaking the diffraction barrier: super-resolution imaging of cells.Cell143, 1047–1058 (2010)..
Zhang, X.&Liu, Z. W. Superlenses to overcome the diffraction limit.Nat. Mater.7, 435–441 (2008)..
Wang, Z. B. et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope.Nat. Commun.2, 218 (2011)..
Chen, L. W. et al. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes.Opto-Electron. Adv.1, 170001 (2018)..
Chen, X. X. et al. Subwavelength imaging and detection using adjustable and movable droplet microlenses.Photonics Res.8, 225–234 (2021)..
Li, L. et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy.Light. : Sci. Appl.2, e104 (2013)..
Wang, F. F. et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging.Nat. Commun.7, 13748 (2016)..
Yang, H. et al. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope.Small10, 1712–1718 (2014)..
Yang, H., Cornaglia, M.&Gijs, M. A. M. Photonic nanojet array for fast detection of single nanoparticles in a flow.Nano Lett.15, 1730–1735 (2015)..
Liang, L. L. et al. Upconversion amplification through dielectric superlensing modulation.Nat. Commun.10, 1391 (2019)..
Xing, C. et al. Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy.ACS Appl. Mater. Interfaces9, 32896–32906 (2017)..
Li, Y. C. et al. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet.Light. : Sci. Appl.5, e16176 (2016)..
Miccio, L. et al. Optobiology: live cells in optics and photonics.J. Phys. : Photonics3, 012003 (2021)..
Franze, K. et al. Müller cells are living optical fibers in the vertebrate retina.Proc. Natl Acad. Sci. USA104, 8287–8292 (2007)..
Li, Y. C. et al. Enhancing upconversion fluorescence with a natural bio-microlens.ACS Nano11, 10672–10680 (2017)..
Li, Y. C., Liu, X. S.&Li, B. J. Single-cell biomagnifier for optical nanoscopes and nanotweezers.Light. : Sci. Appl.8, 61 (2019)..
Miccio, L. et al. Red blood cell as an adaptive optofluidic microlens.Nat. Commun.6, 6502 (2015)..
Wu, T. L. et al. Waveguiding and focusing in a bio-medium with an optofluidic cell chain.Acta Biomaterialia103, 165–171 (2021)..
Humar, M.&Yun, S. H. Intracellular microlasers.Nat. Photonics9, 572–576 (2015)..
Stavenga, D. G.&Wilts, B. D. Oil droplets of bird eyes: microlenses acting as spectral filters.Philos. Trans. R. Soc. B: Biol. Sci.369, 20130041 (2014)..
Cho, S. Y. et al. Cellular lensing and near infrared fluorescent nanosensor arrays to enable chemical efflux cytometry.Nat. Commun.12, 3079 (2021)..
Miccio, L. et al. Biological lenses as a photomask for writing laser spots into ferroelectric crystals.ACS Appl. Bio Mater.2, 4675–4680 (2019)..
Monks, J. N. et al. Spider silk: mother nature's bio-superlens.Nano Lett.16, 5842–5845 (2016)..
Farese, R. V. Jr.&Walther, T. C. Lipid droplets finally get a little R-E-S-P-E-C-T.Cell139, 855–860 (2009)..
Okumura, T. Role of lipid droplet proteins in liver steatosis.J. Physiol. Biochem.67, 629–636 (2011)..
Soppina, V. et al. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes.Proc. Natl Acad. Sci. USA106, 19381–19386 (2009)..
Thiam, A. R.&Beller, M. The why, when and how of lipid droplet diversity.J. Cell Sci.130, 315–324 (2017)..
Blázquez-Castro, A. Optical tweezers: phototoxicity and thermal stress in cells and biomolecules.Micromachines10, 507 (2019)..
Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area.Int. Rev. Cytol.192, 189–221 (1999)..
Hao, X. et al. Microsphere based microscope with optical super-resolution capability.Appl. Phys. Lett.99, 203102 (2011)..
Wang, Z. B. inNanoscienceVol. 3 (eds O'Brien, P.&Thomas, P. J. ) 193–210 (The Royal Society of Chemistry, 2016).
Yang, H. et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet.Nano Lett.16, 4862–4870 (2016)..
Yu, S. J. et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity.J. Am. Chem. Soc.127, 17604–17605 (2005)..
Li, X. H. et al. Enhancement of the second harmonic generation from WS2monolayers by cooperating with dielectric microspheres.Adv. Optical Mater.7, 1801270 (2019)..
Stelzer, E. H. K. Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy.J. Microsc.189, 15–24 (1998)..
Takaoka, M. et al. Endovascular injury induces rapid phenotypic changes in perivascularadipose tissue.Arteriosclerosis Thrombosis Vasc. Biol.30, 1576–1582 (2010)..
Jodalen, H., Lie, R.&Rotevatn, S. Effect of isoproterenol on lipid accumulation in myocardial cells.Res. Exp. Med.181, 239–244 (1982)..
den Hartigh, L. J. et al. Fatty acids from very low-density lipoprotein lipolysisproducts induce lipid droplet accumulation in human monocytes.J. Immunol.184, 3927–3936 (2010)..
Lee, L. L. et al. Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress.Am. J. Physiol. -Cell Physiol.312, C500–C516 (2017)..
Kim, S. W. et al. Eicosapentaenoic acid (EPA) activates PPARγ signaling leading to cell cycle exit, lipid accumulation, and autophagy in human meibomian gland epithelial cells (hMGEC).Ocul. Surf.18, 427–437 (2021)..
Ives, J. T., Normann, R. A.&Barber, P. W. Light intensification by cone oil droplets: electromagnetic considerations.J. Optical Soc. Am.73, 1725–1731 (1983)..
Zhou, S. et al. Effects of whispering gallery mode in microsphere super-resolution imaging.Appl. Phys. B123, 236 (2017)..
Lakadamyali, M. et al. Visualizing infection of individual influenza viruses.Proc. Natl Acad. Sci. USA100, 9280–9285 (2003)..
Xu, H. J. et al. Real-time imaging of rabies virus entry into living vero cells.Sci. Rep.5, 11753 (2015)..
Gérard, D. et al. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere.J. Optical Soc. Am. B26, 1473–1478 (2009)..
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构