1.Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
2.UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
3.MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist, Beijing, China
4.Center for Synthetic & Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
5.Beijing Institute of Collaborative Innovation, Beijing 100094, China
6.Department of Biological Sciences and Center for System Biology, The University of Texas at Dallas, Richardson 75080, USA
7.School of Medical Sciences, Tsinghua University, Beijing 100084, China
8.Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
9.National Biomedical Imaging Center, Peking University, Beijing 100871, China
Juntao Gao (jtgao@tsinghua.edu.cn)
纸质出版日期:2022-01-31,
网络出版日期:2022-01-01,
收稿日期:2021-04-28,
修回日期:2021-11-05,
录用日期:2021-11-27
Scan QR Code
Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells[J]. LSA, 2022,11(1):50-62.
Guan, M. et al. Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells. Light: Science & Applications, 11, 50-62 (2022).
Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells[J]. LSA, 2022,11(1):50-62. DOI: 10.1038/s41377-021-00689-1.
Guan, M. et al. Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells. Light: Science & Applications, 11, 50-62 (2022). DOI: 10.1038/s41377-021-00689-1.
The orientation of fluorophores can reveal crucial information about the structure and dynamics of their associated subcellular organelles. Despite significant progress in super-resolution
fluorescence polarization microscopy remains limited to unique samples with relatively strong polarization modulation and not applicable to the weak polarization signals in samples due to the excessive background noise. Here we apply optical lock-in detection to amplify the weak polarization modulation with super-resolution. This novel technique
termed optical lock-in detection super-resolution dipole orientation mapping (OLID-SDOM)
could achieve a maximum of 100 frames per second and rapid extraction of 2D orientation
and distinguish distance up to 50 nm
making it suitable for monitoring structural dynamics concerning orientation changes in vivo. OLID-SDOM was employed to explore the universal anisotropy of a large variety of GFP-tagged subcellular organelles
including mitochondria
lysosome
Golgi
endosome
etc. We found that OUF (Orientation Uniformity Factor) of OLID-SDOM can be specific for different subcellular organelles
indicating that the anisotropy was related to the function of the organelles
and OUF can potentially be an indicator to distinguish normal and abnormal cells (even cancer cells). Furthermore
dual-color super-resolution OLID-SDOM imaging of lysosomes and actins demonstrates its potential in studying dynamic molecular interactions. The subtle anisotropy changes of expanding and shrinking dendritic spines in live neurons were observed with real-time OLID-SDOM. Revealing previously unobservable fluorescence anisotropy in various samples and indicating their underlying dynamic molecular structural changes
OLID-SDOM expands the toolkit for live cell research.
Betzig, E. Proposed method for molecular optical imaging.Opt. Lett.20, 237-239 (1995)..
Hess, S. T., Girirajan, T. P. K.&Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy.Biophys. J.91, 4258-4272 (2006)..
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution.Science313, 1642-1645 (2006)..
Rust, M. J., Bates, M.&Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).Nat. Methods3, 793-796 (2006)..
Hell, S. W.&Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy.Opt. Lett.19, 780-782 (1994)..
Liu, Y. J. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy.Nature543, 229-233 (2017)..
Biggs, D. S. C. A practical guide to deconvolution of fluorescence microscope imagery.Microsc. Today18, 10-14 (2010)..
Pankajakshan, P. et al. Blind deconvolution for diffraction-limited fluorescence microscopy. InProc. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 740-743 (IEEE, Paris, France, 2008).
Zhang, Y. W. et al. Super-resolution algorithm based on Richardson-Lucy deconvolution for three-dimensional structured illumination microscopy.J. Optical Soc. Am. A36, 173-178 (2019)..
Qin, J., Yi, X. Y.&Weiss, S. A novel fluorescence microscopy image deconvolution approach. InProc. IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 441-444 (IEEE, Washington, DC, USA, 2018).
Liu, L. X. et al. Super-resolution image reconstruction based on single-molecule localization algorithm.Photonics8, 273 (2021)..
Zhao, W. S. et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy.Nat. Biotechnol. 1-12 (2021).
DeMay, B. S. et al. Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals.J. Cell Biol.193, 1065-1081 (2011)..
Sund, S. E., Swanson, J. A.&Axelrod, D. Cell membrane orientation visualized by polarized total internal reflection fluorescence.Biophysical J.77, 2266-2283 (1999)..
Benninger, R. K. P. et al. Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes.Biophysical J.88, 609-622 (2005)..
Kress, A. et al. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy.Biophysical J.105, 127-136 (2013)..
Lazar, J. et al. Two-photon polarization microscopy reveals protein structure and function.Nat. Methods8, 684-690 (2011)..
Mehta, S. B. et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells.Proc. Natl Acad. Sci. USA113, E6352-E6361 (2016)..
Kinosita, K. Jr et al. Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium.J. Cell Biol.115, 67-73 (1991)..
Frahm, L.&Keller, J. Polarization modulation adds little additional information tosuper-resolution fluorescence microscopy.Nat. Methods13, 7-8 (2016)..
Vrabioiu, A. M.&Mitchison, T. Structural insights into yeast septin organization from polarized fluorescence microscopy.Nature443, 466-469 (2006)..
Kampmann, M. et al. Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy.Nat. Struct. Mol. Biol.18, 643-649 (2011)..
Toprak, E. et al. Defocused orientation and position imaging (DOPI) of myosin V.Proc. Natl Acad. Sci. USA103, 6495-6499 (2006)..
Forkey, J. N. et al. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization.Nature422, 399-404 (2003)..
Sosa, H. et al. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy.Nat. Struct. Biol.8, 540-544 (2001)..
Yasuda, R. et al. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase.Nature410, 898-904 (2001)..
Ha, T. et al. Single molecule dynamics studied by polarization modulation.Phys. Rev. Lett.77, 3979-3982 (1996)..
Backer, A. S., Lee, M. Y.&Moerner, W. F. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements.Optica3, 659-666 (2016)..
Cruz, C. A. V. et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy.Proc. Natl Acad. Sci. USA113, E820-E828 (2016)..
Hafi, N. et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing.Nat. Methods11, 579-584 (2014)..
Artigas, D. et al. Sub-diffraction discrimination with polarization-resolved two-photon excited fluorescence microscopy.Optica4, 911-918 (2017)..
Zhanghao, K. et al. Super-resolution dipole orientation mapping via polarization demodulation.Light. : Sci. Appl.5, e16166 (2016)..
Zhanghao, K. et al. Super-resolution fluorescence polarization microscopy.J. Innovative Optical Health Sci.11, 1730002 (2018)..
Wang, M. Y. et al. Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information.Nanoscale10, 19757-19765 (2018)..
Zhanghao, K. et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy.Nat. Commun.10, 4694 (2019)..
Zhang, O. M. et al. Imaging the three-dimensional orientation and rotational mobility offluorescent emitters using the tri-spot point spread function.Appl. Phys. Lett.113, 031103 (2018)..
Du, G., Marriott, G.&Yan, Y. L. An improved optical lock-in detection method for contrast-enhanced imaging in living cells. InProc. 4th International Conference on Bioinformatics and Biomedical Engineering. 1-5 (IEEE, Chengdu, China, 2010).
Marriott, G. et al. Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells.Proc. Natl Acad. Sci. USA105, 17789-17794 (2008)..
Park, K. S. et al. High-contrast epi-fluorescence wide-field imaging of biological cells using integrating-bucket method.Opt. Commun.355, 427-432 (2015)..
Wu, L. X. et al. High-contrast fluorescence imaging in fixed and living cells using optimized optical switches.PLoS ONE8, e64738 (2013)..
Chen, Y. C.&Dickson, R. M. Improved fluorescent protein contrast and discrimination by optically controlling dark state lifetimes.J. Phys. Chem. Lett.8, 733-736 (2017)..
Abbandonato, G. et al. Quantitative optical lock‐in detection for quantitative imaging of switchable and non‐switchable components.Microsc. Res. Tech.79, 929-937 (2016)..
Beck, A.&Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.SIAM J. Imaging Sci.2, 183-202 (2009)..
Shibata, Y. et al. Mechanisms shaping the membranes of cellular organelles.Annu. Rev. Cell Dev. Biol.25, 329-354 (2009)..
Huh, W. K. et al. Global analysis of protein localization in budding yeast.Nature425, 686-691 (2003)..
Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.Science355, 606-612 (2017)..
Schmidt, A.&Hall, M. N. Signaling to the actin cytoskeleton.Annu. Rev. Cell Dev. Biol.14, 305-338 (1998)..
Taunton, J. Actin filament nucleation by endosomes, lysosomes and secretory vesicles.Curr. Opin. Cell Biol.13, 85-91 (2001)..
Song, W. J. et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity.Nat. Med.17, 377-382 (2011)..
Trimmer, P. A. et al. Abnormal mitochondrial morphology in sporadic parkinson's and alzheimer's disease cybrid cell lines.Exp. Neurol.162, 37-50 (2000)..
Zuo, Y. et al. Development of long-term dendritic spine stability in diverse regions of cerebral cortex.Neuron46, 181-189 (2005)..
Bosch, M. et al. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation.Neuron82, 444-459 (2014)..
Berning, S. et al. Nanoscopy in a living mouse brain.Science335, 551 (2012)..
Allard, A. et al. Actin modulates shape and mechanics of tubular membranes.Sci. Adv.6, eaaz3050 (2020)..
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构