1.Experimental Physics Ⅷ – Ultrafast Dynamics, University of Bayreuth, Bayreuth, Germany
2.ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Melbourne, Australia
3.Physical Chemistry I, University of Bayreuth, Bayreuth, Germany
Georg Herink (georg.herink@uni-bayreuth.de)
纸质出版日期:2022-01-31,
网络出版日期:2022-01-01,
收稿日期:2021-09-23,
修回日期:2021-11-26,
录用日期:2021-12-01
Scan QR Code
Ultrafast imaging of terahertz electric waveforms using quantum dots[J]. LSA, 2022,11(1):63-68.
Heindl, M. B. et al. Ultrafast imaging of terahertz electric waveforms using quantum dots. Light: Science & Applications, 11, 63-68 (2022).
Ultrafast imaging of terahertz electric waveforms using quantum dots[J]. LSA, 2022,11(1):63-68. DOI: 10.1038/s41377-021-00693-5.
Heindl, M. B. et al. Ultrafast imaging of terahertz electric waveforms using quantum dots. Light: Science & Applications, 11, 63-68 (2022). DOI: 10.1038/s41377-021-00693-5.
Microscopic electric fields govern the majority of elementary excitations in condensed matter and drive electronics at frequencies approaching the Terahertz (THz) regime. However
only few imaging schemes are able to resolve sub-wavelength fields in the THz range
such as scanning-probe techniques
electro-optic sampling
and ultrafast electron microscopy. Still
intrinsic constraints on sample geometry
acquisition speed and field strength limit their applicability. Here
we harness the quantum-confined Stark-effect to encode ultrafast electric near-fields into colloidal quantum dot luminescence. Our approach
termed Quantum-probe Field Microscopy (QFIM)
combines far-field imaging of visible photons with phase-resolved sampling of electric waveforms. By capturing ultrafast movies
we spatio-temporally resolve a Terahertz resonance inside a bowtie antenna and unveil the propagation of a Terahertz waveguide excitation deeply in the sub-wavelength regime. The demonstrated QFIM approach is compatible with strong-field excitation and sub-micrometer resolution—introducing a direct route towards ultrafast field imaging of complex nanodevices in-operando.
Hertz, H. Ueber electrodynamische Wellen im Luftraume und deren Reflexion.Ann. Phys.270, 609-623 (1888)..
Wu, Q.&Zhang, X. ‐C. Free‐space electro‐optic sampling of terahertz beams.Appl. Phys. Lett.67, 3523-3525 (1995)..
Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. C.&Knox, W. H. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory.Appl. Phys. Lett.74, 1516-1518 (1999)..
Keiber, S. et al. Electro-optic sampling of near-infrared waveforms.Nat. Photonics10, 159-162 (2016)..
Goulielmakis, E. et al. Direct measurement of light waves.Science305, 1267-1269 (2004)..
Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J.&Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices.Nano Lett.8, 3766-3770 (2008)..
Basov, D. N., Fogler, M. M.&Abajo, F. J. Polaritons in van der Waals materials.Science354, aag1992 (2016)..
Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics.Science357, 187-191 (2017)..
Jepsen, P. U., Jacobsen, R. H.&Keiding, S. R. Generation and detection of terahertz pulses from biased semiconductor antennas.JOSA B13, 2424-2436 (1996)..
Hunsche, S., Koch, M., Brener, I.&Nuss, M. C. THz near-field imaging.Opt. Commun.150, 22-26 (1998)..
Feurer, T., Vaughan, J. C.&Nelson, K. A. Spatiotemporal coherent control of lattice vibrational waves.Science299, 374-377 (2003)..
Wächter, M., Nagel, M.&Kurz, H. Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission.Appl. Phys. Lett.90, 061111 (2007)..
Blanchard, F. et al. Real-time terahertz near-field microscope.Opt. Express19, 8277 (2011)..
Knoll, B.&Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy.Nature399, 134-137 (1999)..
Chen, H. -T., Kersting, R.&Cho, G. C. Terahertz imaging with nanometer resolution.Appl. Phys. Lett.83, 3009-3011 (2003)..
Ribbeck, H. -Gvon et al. Spectroscopic THz near-field microscope.Opt. Express16, 3430-3438 (2008)..
Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution.Nat. Photonics8, 841-845 (2014)..
Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope.Nat. Photonics7, 620-625 (2013)..
Peller, D. et al. Quantitative sampling of atomic-scale electromagnetic waveforms.Nat. Photonics15, 143-147 (2021)..
Zewail, A. H. Four-dimensional electron microscopy.Science328, 187-193 (2010)..
Ryabov, A.&Baum, P. Electron microscopy of electromagnetic waveforms.Science353, 374-377 (2016)..
Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam.Ultramicroscopy176, 63-73 (2017)..
Hirori, H. et al. Extraordinary carrier multiplication gated by a picosecond electric field pulse.Nat. Commun.2, 594 (2011)..
Lange, C. et al. Extremely nonperturbative nonlinearities in GaAs driven by atomically strong terahertz fields in gold metamaterials.Phys. Rev. Lett.113, 227401 (2014)..
Iwaszczuk, K., Zalkovskij, M., Strikwerda, A. C.&Jepsen, P. U. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission.Optica2, 116 (2015)..
Pein, B. C. et al. Terahertz-driven luminescence and colossal stark effect in CdSe-CdS colloidal quantum dots.Nano Lett.17, 5375-5380 (2017)..
Chen, H. -T. et al. Active terahertz metamaterial devices.Nature444, 597-600 (2006)..
Lin, Y. -M. et al. 100-GHz transistors from wafer-scale epitaxial graphene.Science327, 662-662 (2010)..
Kauranen, M.&Zayats, A. V. Nonlinear plasmonics.Nat. Photonics6, 737-748 (2012)..
Hentschel, M., Schäferling, M., Duan, X., Giessen, H.&Liu, N. Chiral plasmonics.Sci. Adv.3, e1602735 (2017)..
Mendez, E. E. et al. Effect of an electric field on the luminescence of GaAs quantum wells.Phys. Rev. B26, 7101-7104 (1982)..
Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect.Phys. Rev. Lett.53, 2173-2176 (1984)..
Empedocles, S. A.&Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots.Science278, 2114-2117 (1997)..
Hoffmann, M. C., Monozon, B. S., Livshits, D., Rafailov, E. U.&Turchinovich, D. Terahertz electro-absorption effect enabling femtosecond all-optical switching in semiconductor quantum dots.Appl. Phys. Lett.97, 231108 (2010)..
Pein, B. C. et al. Terahertz-driven stark spectroscopy of CdSe and CdSe-CdS core-shell quantum dots.Nano Lett.19, 8125-8131 (2019)..
Park, K., Deutsch, Z., Li, J. J., Oron, D.&Weiss, S. Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature.ACS Nano6, 10013-10023 (2012)..
Kuo, Y. et al. Characterizing the quantum-confined Stark effect in semiconductor quantum dots and nanorods for single-molecule electrophysiology.ACS Photonics5, 4788-4800 (2018)..
Grischkowsky, D. R. Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy.IEEE J. Sel. Top. Quantum Electron.6, 1122-1135 (2000)..
Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. -Y.&Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators.Nature440, 508-511 (2006)..
Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines.Nat. Photonics5, 283-287 (2011)..
Chen, Y. et al. Efficient interfacing photonic and long-range dielectric-loaded plasmonic waveguides.Opt. Express23, 9100 (2015)..
Prämassing, M., Liebtrau, M., Schill, H. J., Irsen, S.&Linden, S. Interferometric near-field characterization of plasmonic slot waveguides in single- and poly-crystalline gold films.Opt. Express28, 12998 (2020)..
Kuttge, M. et al. Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.Appl. Phys. Lett.93, 113110 (2008)..
Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns.Science344, 1369-1373 (2014)..
Seren, H. R. et al. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.Light Sci. Appl.5, e16078-e16078 (2016)..
Hanne, J. et al. STED nanoscopy with fluorescent quantum dots.Nat. Commun.6, 7127 (2015)..
Hebling, J., Almasi, G., Kozma, I.&Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation.Opt. Express10, 1161 (2002)..
Johnson, P. B.&Christy, R. W. Optical constants of the noble metals.Phys. Rev. B6, 4370-4379 (1972)..
Rubin, M. Optical properties of soda lime silica glasses.Sol. Energy Mater.12, 275-288 (1985)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构