1.Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Centre d'Étude Recherches et Applications (CERLA), F-59000, Lille, France
2.DESY (Deutsches Elektronen-Synchrotron), Notkestr. 85, D-22607, Hamburg, Germany
3.Electrical and Computer Engineering Department, University of California, Los Angeles, 420 Westwood Plaza, 90095, Los Angeles, CA, USA
Serge Bielawski (serge.bielawski@univ-lille.fr)
纸质出版日期:2022-01-31,
网络出版日期:2022-01-10,
收稿日期:2021-04-27,
修回日期:2021-11-17,
录用日期:2021-12-10
Scan QR Code
Phase Diversity Electro-optic Sampling: A new approach to single-shot terahertz waveform recording[J]. LSA, 2022,11(1):87-100.
Roussel, E. et al. Phase Diversity Electro-optic Sampling: A new approach to single-shot terahertz waveform recording. Light: Science & Applications, 11, 87-100 (2022).
Phase Diversity Electro-optic Sampling: A new approach to single-shot terahertz waveform recording[J]. LSA, 2022,11(1):87-100. DOI: 10.1038/s41377-021-00696-2.
Roussel, E. et al. Phase Diversity Electro-optic Sampling: A new approach to single-shot terahertz waveform recording. Light: Science & Applications, 11, 87-100 (2022). DOI: 10.1038/s41377-021-00696-2.
Recording electric field evolution in single-shot with THz bandwidth is needed in science including spectroscopy
plasmas
biology
chemistry
Free-Electron Lasers
accelerators
and material inspection. However
the potential application range depends on the possibility to achieve sub-picosecond resolution over a long time window
which is a largely open problem for single-shot techniques. To solve this problem
we present a new conceptual approach for the so-called spectral decoding technique
where a chirped laser pulse interacts with a THz signal in a Pockels crystal
and is analyzed using a grating optical spectrum analyzer. By borrowing mathematical concepts from photonic time stretch theory and radio-frequency communication
we deduce a novel dual-output electro-optic sampling system
for which the input THz signal can be numerically retrieved—with unprecedented resolution—using the so-called phase diversity technique. We show numerically and experimentally that this approach enables the recording of THz waveforms in single-shot over much longer durations and/or higher bandwidth than previous spectral decoding techniques. We present and test the proposed DEOS (Diversity Electro-Optic Sampling) design for recording 1.5 THz bandwidth THz pulses
over 20 ps duration
in single-shot. Then we demonstrate the potential of DEOS in accelerator physics by recording
in two successive shots
the shape of 200 fs RMS relativistic electron bunches at European X-FEL
over 10 ps recording windows. The designs presented here can be used directly for accelerator diagnostics
characterization of THz sources
and single-shot Time-Domain Spectroscopy.
Cappelli, F. et al. Retrieval of phase relation and emission profile of quantum cascade laser frequency combs.Nat. Photonics13, 562, https://doi.org/10.1038/s41566-019-0451-1 (2019)..
Kress, M., Löffler, T., Eden, S., Thomson, M.&Roskos, H. G. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves.Opt. Lett.29, 1120–1122, https://doi.org/10.1364/OL.29.001120 (2004)..
Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions.Nature561, 507 (2018)..
Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator.Nat. Photonics14, 391–400 (2020)..
Buck, A. et al. Real-time observation of laser-driven electron acceleration.Nat. Phys.7, 543–548 (2011)..
Valdmanis, J., Mourou, G.&Gabel, C. Picosecond electro-optic sampling system.Appl. Phys. Lett.41, 211–212 (1982)..
Jiang, Z.&Zhang, X. -C. Electro-optic measurement of THz field pulses with a chirped optical beam.Appl. Phys. Lett.72, 1945 (1998)..
Sun, F., Jiang, Z.&Zhang, X. -C. Analysis of terahertz pulse measurement with a chirped probe beam.Appl. Phys. Lett.73, 2233–2235 (1998)..
Yan, X. et al. Subpicosecond electro-optic measurement of relativistic electron pulses.Phys. Rev. Lett.85, 3404 (2000)..
Yellampalle, B., Kim, K., Rodriguez, G., Glownia, J.&Taylor, A. Algorithm for high-resolution single-shot THz measurement using in-line spectral interferometry with chirped pulses.Appl. Phys. Lett.87, 211109 (2005)..
Wu, B., Zhang, Z., Cao, L., Fu, Q.&Xiong, Y. Electro-optic sampling of optical pulses and electron bunches for a compact THz-FEL source.Infrared Phys. Technol.92, 287–294 (2018)..
Shan, J. et al. Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling.Opt. Lett.25, 426–428 (2000)..
Srinivasan-Rao, T. et al. Novel single shot scheme to measure submillimeter electron bunch lengths using electro-optic technique.Phys. Rev. Spec. Top. -Accel. Beams5, 042801 (2002)..
Kawada, Y., Yasuda, T., Nakanishi, A., Akiyama, K.&Takahashi, H. Single-shot terahertz spectroscopy using pulse-front tilting of an ultra-short probe pulse.Opt. Express19, 11228–11235 (2011)..
Minami, Y., Hayashi, Y., Takeda, J.&Katayama, I. Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror.Appl. Phys. Lett.103, 051103 (2013)..
Kim, K., Yellampalle, B., Taylor, A., Rodriguez, G.&Glownia, J. Single-shot terahertz pulse characterization via twodimensional electro-optic imaging with dual echelons.Opt. Lett.32, 1968–1970 (2007)..
Jamison, S. P., Shen, J., MacLeod, A. M., Gillespie, W.&Jaroszynski, D. A. High-temporal-resolution, single-shot characterization of terahertz pulses.Opt. Lett.28, 1710–1712 (2003)..
Walsh, D. A., Snedden, E. W.&Jamison, S. P. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe.Appl. Phys. Lett.106, 181109 (2015)..
Bhushan, A., Coppinger, F.&Jalali, B. Time-stretched analogue-to-digital conversion.Electron. Lett.34, 1081–1083 (1998)..
Fard, A. M., Gupta, S.&Jalali, B. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging.Laser Photonics Rev.7, 207–263 (2013)..
Han, Y., Boyraz, O.&Jalali, B. Ultrawide-band photonic time-stretch A/D converter employing phase diversity.IEEE Trans. Microw. Theory Tech.53, 1404 (2005)..
Wilke, I. et al. Single-shot electron-beam bunch length measurements.Phys. Rev. Lett.88, 124801 (2002)..
Peng, X. -Y., Willi, O., Chen, M.&Pukhov, A. Optimal chirped probe pulse length for terahertz pulse measurement.Opt. Express16, 12342–12349 (2008)..
Fletcher, J. R. Distortion and uncertainty in chirped pulse THz spectrometers.Opt. Express10, 1425–1430 (2002)..
Schmidhammer, U., De Waele, V., Marques, J. -R., Bourgeois, N.&Mostafavi, M. Single shot linear detection of 0.01–10 THz electromagnetic fields.Appl. Phys. B94, 95 (2009)..
Müller, F. et al. Electro-optical measurement of sub-ps structures in low charge electron bunches.Phys. Rev. ST Accel. Beams15, 070701 (2012)..
Funkner, S. et al. High throughput data streaming of individual longitudinal electron bunch profiles.Phys. Rev. Accel. Beams22, 022801 (2019)..
Kahn, L. R. Ratio squarer.Proc. Inst. Radio Eng.42, 1704–1704 (1954)..
Murakami, H., Shimizu, K., Katsurada, M.&Nashima, S. Dependence on chirp rate and spectral resolution of the terahertz field pulse waveform measured by electro-optic detection using a chirped optical pulse and a spectrometer and its effect on terahertz spectroscopy.J. Appl. Phys.104, 103111 (2008)..
van Tilborg, J., Tóth, C., Matlis, N., Plateau, G.&Leemans, W. Single-shot measurement of the spectral envelope of broadbandwidth terahertz pulses from femtosecond electron bunches.Opt. Lett.33, 1186–1188 (2008)..
Casalbuoni, S. et al. Numerical studies on the electro-optic detection of femtosecond electron bunches.Phys. Rev. ST Accel. Beams11, 072802 (2008)..
Steffen, B. et al. Electro-optic time profile monitors for femtosecond electron bunches at the soft X-ray free-electron laser FLASH.Physi. Rev. ST Accel. Beams12, 032802 (2009)..
Wu, B., Tan, P., Xiong, Y., Fu, Q.&Cao, L. Comparison of the detection performance of three nonlinear crystals for the electro-optic sampling of a FEL-THz source. InProceedings of the IPAC 2014 Conference, p2891 (JACoW Publishing, 2014).
Steffen, B. et al. Compact single-shot electro-optic detection system for THz pulses with femtosecond time resolution at MHz repetition rates.Rev. Sci. Instrum.91, 045123 (2020)..
Jackson, J. D.Classical Electrodynamics3rd edn, John Wiley&Sons, Inc., 560 (1999).
Oepts, D.&Knippels, G. Direct measurement of the shape of short electron bunches. InProceedings of the 1998 Free Electron Laser Conference(1998), Archived at the DOE Office of Scientific and Technical Information (OSTI), USA.https://www.osti.gov/biblio/769177https://www.osti.gov/biblio/769177..
Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window.Nat. Photonics1, 336–342, https://doi.org/10.1038/nphoton.2007.76 (2007)..
Galayda, J.The LCLS-II: A High Power Upgrade to the LCLS.https://doi.org/10.18429/JACoW-IPAC2018-MOYGB2https://doi.org/10.18429/JACoW-IPAC2018-MOYGB2(2018)..
Yan, J.&Deng, H. Multi-beam-energy operation for the continuous-wave x-ray free electron laser.Phys. Rev. Accel. Beams22, 090701, https://doi.org/10.1103/PhysRevAccelBeams.22.090701 (2019)..
Gisriel, C. et al. Membrane protein megahertz crystallography at the European XFEL.Nat. Commun.10, 5021, https://doi.org/10.1038/s41467-019-12955-3 (2019)..
Pandey, S. et al. Time-resolved serial femtosecond crystallography at the European XFEL.Nat. Methods17, 73–78, https://doi.org/10.1038/s41592-019-0628-z (2020)..
Roussel, E. et al. Observing microscopic structures of a relativistic object using a time-stretch strategy.Sci. Rep.5, 10330, https://doi.org/10.1038/srep10330 (2015)..
Goda, K.&Jalali, B. Dispersive fourier transformation for fast continuous single-shot measurements.Nat. Photonics7, 102 (2013)..
Han, Y.&Jalali, B. Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations.J. Lightwave Technol.21, 3085 (2003)..
Szwaj, C. et al. High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses.Rev. Sci. Instrum.87, 103111 (2016)..
Di Mitri, S. et al. Coherent THz emission enhanced by coherent synchrotron radiation wakefield.Sci. Rep.8, 11661 (2018)..
Pan, R. et al. Photon diagnostics at the FLASH THz beamline.J. Synchrotron Radiat.26, 700–707, https://doi.org/10.1107/S1600577519003412 (2019)..
Jolly, S. W. et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation.Nat. Commun.10, 2591 (2019)..
Evain, C. et al. Direct observation of spatiotemporal dynamics of short electron bunches in storage rings.Phys. Rev. Lett.118, 054801 (2017)..
Tikan, A., Bielawski, S., Szwaj, C., Randoux, S.&Suret, P. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography.Nat. Photonics12, 228 (2018)..
Rota, L. et al. KALYPSO: Linear array detector for high-repetition rate and real-time beam diagnostics.Nucl. Instrum. Methods Phys. Res. Sect. A936, 10, https://doi.org/10.1016/j.nima.2018.10.093 (2019)..
Gerth, C. et al. Linear array detector for online diagnostics of spectral distributions at MHz repetition rates.J. Synchrotron Radiat.26, 1514–1522, https://doi.org/10.1107/S1600577519007835 (2019)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构