1.School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
2.LTCI, Institut Polytechnique de Paris, Télécom Paris, 19 place Marguerite Perey, 91120, Palaiseau, France
3.School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
4.Center for High Technology Materials, University of New-Mexico, 1313 Goddard St SE, Albuquerque, NM, 87106, USA
5.Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai, 201210, China
Jiagui Wu (mgh@swu.edu.cn)
Frédéric Grillot (frederic.grillot@telecom-paris.fr)
Cheng Wang (wangcheng1@shanghaitech.edu.cn)
纸质出版日期:2022-01-31,
网络出版日期:2022-01-02,
收稿日期:2021-09-16,
修回日期:2021-12-13,
录用日期:2021-12-14
Scan QR Code
Mid-infrared hyperchaos of interband cascade lasers[J]. LSA, 2022,11(1):69-78.
Deng, Y. et al. Mid-infrared hyperchaos of interband cascade lasers. Light: Science & Applications, 11, 69-78 (2022).
Mid-infrared hyperchaos of interband cascade lasers[J]. LSA, 2022,11(1):69-78. DOI: 10.1038/s41377-021-00697-1.
Deng, Y. et al. Mid-infrared hyperchaos of interband cascade lasers. Light: Science & Applications, 11, 69-78 (2022). DOI: 10.1038/s41377-021-00697-1.
Chaos in nonlinear dynamical systems is featured with irregular appearance and with high sensitivity to initial conditions. Near-infrared light chaos based on semiconductor lasers has been extensively studied and has enabled various applications. Here
we report a fully-developed hyperchaos in the mid-infrared regime
which is produced from interband cascade lasers subject to the external optical feedback. Lyapunov spectrum analysis demonstrates that the chaos exhibits three positive Lyapunov exponents. Particularly
the chaotic signal covers a broad frequency range up to the GHz level
which is two to three orders of magnitude broader than existed mid-infrared chaos solutions. The interband cascade lasers produce either periodic oscillations or low-frequency fluctuations before bifurcating to hyperchaos. This hyperchaos source is valuable for developing long-reach secure optical communication links and remote chaotic Lidar systems
taking advantage of the high-transmission windows of the atmosphere in the mid-infrared regime.
Strogatz, S. H.Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed. (Westview Press, 2015).
Haken, H. Analogy between higher instabilities in fluids and lasers.Phys. Lett. A53, 77–78 (1975)..
Yamada, T.&Graham, R. Chaos in a laser system under a modulated external field.Phys. Rev. Lett.45, 1322–1324 (1980)..
Arecchi, F. T., Meucci, R., Puccioni, G.&Tredicce, J. Experimental evidence of subharmonic bifurcations, multistability and turbulence in a Q-switched gas laser.Phys. Rev. Lett.49, 1217–1220 (1982)..
Weiss, C. O., Abraham, N. B.&Hübner, U. Homoclinic and heteroclinic chaos in a single-mode laser.Phys. Rev. Lett.61, 1587–1590 (1988)..
Bracikowski, C.&Roy, R. Chaos in a multimode solid-state laser system.Chaos1, 49–64 (1991)..
VanWiggeren, G. D.&Roy, R. Communication with chaotic lasers.Science279, 1198–1200 (1998)..
Ohtsubo, J.Semiconductor Lasers: Stability, Instability and Chaos, 4th ed. (Springer, 2017).
Sciamanna, M.&Shore, K. A. Physics and applications of laser diode chaos.Nat. Photonics9, 151–162 (2015)..
Virte, M., Panajotov, K., Thienpont, H.&Sciamanna, M. Deterministic polarization chaos from a laser diode.Nat. Photonics7, 60–65 (2013)..
Albert, F. et al. Observing chaos for quantum-dot microlasers with external feedback.Nat. Commun.2, 366 (2011)..
Kreinberg, S. et al. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels.Nat. Commun.10, 1539 (2019)..
Argyris, A. et al. Chaos-based communications at high bit rates using commercial fibre-optic links.Nature438, 343–346 (2005)..
Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers.Nat. Photonics2, 728–732 (2008)..
Lin, F. Y.&Liu, J. M. Chaotic lidar.IEEE J. Sel. Top. Quantum Electron.10, 991–997 (2004)..
Brunner, D., Soriano, M. C., Mirasso, C. R.&Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states.Nat. Commun.4, 1364 (2013)..
Kuriki, Y., Nakayama, J., Takano, K.&Uchida, A. Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers.Opt. Express26, 5777–5788 (2018)..
Chen, Z.&Segev, M. Highlighting photonics: looking into the next decade.eLight1, 2 (2021)..
Didier, D., Glorieux, P.&Hennequin, D. Chaos in a CO2laser with modulated parameters: experiments and numerical simulations.Phys. Rev. A36, 4775 (1987)..
Gioggia, R. S.&Abraham, N. B. Routes to chaotic output from a single-mode, dc-excited laser.Phys. Rev. Lett.51, 650–653 (1983)..
Uchida, A.Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization. (Wiley, 2012).
Jumpertz, L., Schires, K., Carras, M., Sciamanna, M.&Grillot, F. Chaotic light at mid-infrared wavelength.Light-Sci. Appl5, e16088 (2016)..
Spitz, O., Wu, J., Carras, M., Wong, C. W.&Grillot, F. Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures.Laser Phys. Lett.15, 116201 (2018)..
Spitz, O. et al. Investigation of chaotic and spiking dynamics in mid-infrared quantum cascade lasers operating continuous-wave and under current modulation.IEEE J. Sel. Top. Quantum Electron.25, 1200311 (2019)..
Spitz, O., Wu, J., Carras, M., Wong, C. W.&Grillot, F. Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser.Sci. Rep.9, 4451 (2019)..
Pérez, G.&Cerdeira, H. A. Extracting messages masked by chaos.Phys. Rev. Lett.74, 1970–1973 (1995)..
Qi, G., van Wyk, M. A., van Wyk, B. J.&Chen, G. On a new hyperchaotic system.Phys. Lett. A372, 124–136 (2008)..
Spitz, O. et al. Private communication with quantum cascade laser photonic chaos.Nat. Commun.12, 3327 (2021)..
Sacher, J., Elsässer, W.&Gobel, E. O. Intermittency in the coherence collapse of a semiconductor-laser with external feedback.Phys. Rev. Lett.63, 2224–2227 (1989)..
Fischer, I. et al. Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers.Phys. Rev. Lett.76, 220–223 (1996)..
Yang, R. Q. Infrared laser based on intersubband transitions in quantum wells.Superlattices Microstruct.17, 77–83 (1995)..
Lin, C. H. et al. Type-II interband quantum cascade laser at 3.8 μm.Electron. Lett.33, 598–599 (1997)..
Tian, Z. et al. InAs-based interband cascade lasers with emission wavelength at 10.4 μm.Electron. Lett.48, 113–114 (2012)..
Li, L. et al. MBE-grown long-wavelength interband cascade lasers on InAs substrates.J. Cryst. Growth425, 369–372 (2015)..
Yang, R. Q. et al. InAs-based interband cascade lasers.IEEE J. Sel. Top. Quantum Electron.25, 1200108 (2019)..
Vurgaftman, I. et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption.Nat. Commun.2, 585 (2011)..
Canedy, C. L. et al. Pulsed and CW performance of 7-stage interband cascade lasers.Opt. Express22, 7702–7710 (2014)..
Kim, M. et al. High-power continuous-wave interband cascade lasers with 10 active stages.Opt. Express23, 9664–9672 (2015)..
Vurgaftman, I. et al. Mid-IR type-II interband cascade lasers.IEEE J. Sel. Top. Quantum Electron.17, 1435–1444 (2011)..
Vurgaftman, I. et al. Interband cascade lasers with low threshold powers and high output powers.IEEE J. Sel. Top. Quantum Electron.19, 1200210 (2013)..
Deng, Y., Zhao, B. B.&Wang, C. Linewidth broadening factor of an interband cascade laser.Appl. Phys. Lett.115, 181101 (2019)..
Tkach, R.&Chraplyvy, A. Regimes of feedback effects in 1.5-μm distributed feedback lasers.J. Lightwave Technol.4, 1655–1661 (1986)..
Chan, S. C.&Liu, J. M. Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics.IEEE J. Sel. Top. Quantum Electron.10, 1025–1032 (2004)..
Hwang, S. K., Liu, J. M.&White, J. K. Characteristics of period-one oscillations in semiconductor lasers subject to optical injection.IEEE J. Sel. Top. Quantum Electron.10, 974–981 (2004)..
Simpson, T. B., Liu, J. M., AlMulla, M., Usechak, N. G.&Kovanis, V. Limit-cycledynamics with reduced sensitivity to perturbations.Phys. Rev. Lett.112, 023901 (2014)..
Wang, C. et al. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation.Opt. Lett.41, 1153–1156 (2016)..
Zhang, L.&Chan, S. C. Cascaded injection of semiconductor lasers in period-one oscillations for millimeter-wave generation.Opt. Lett.44, 4905–4908 (2019)..
Tseng, C. H., Lin, C. T.&Hwang, S. K. V and W-band microwave generation and modulation using semiconductor lasers at period-one nonlinear dynamics.Opt. Lett.45, 6819–6822 (2020)..
Lin, L. C., Liu, S. H.&Lin, F. Y. Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback.Opt. Express25, 25523–25532 (2017)..
Wishon, M. J. et al. Low-noise X-band tunable microwave generator based on a semiconductor laser with feedback.IEEE Photonics Technol. Lett.30, 1597–1600 (2018)..
Li, S. S. et al. Stable period-one oscillations in a semiconductor laser under optical feedback from a narrowband fiber Bragg grating.Opt. Express28, 21286–21299 (2020)..
Schunk, N.&Petermann, K. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback.IEEE J. Quantum Electron24, 1242–1247 (1988)..
Petermann, K. External optical feedback phenomena in semiconductor lasers.IEEE J. Sel. Top. Quantum Electron.1, 480–489 (1995)..
Matsuda, M. et al. Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback. In2018 IEEE International Semiconductor Laser Conference(ISLC) 1–2 (Santa Fe, NM, USA, 2018).
Duan, J. et al. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon.IEEE Photonics Technol. Lett.31, 345–348 (2019)..
Helms, J.&Petermann, K. A simple analytic expression for the stable operation range of laser diodes with optical feedback.IEEE J. Quantum Electron26, 833–836 (1990)..
Fan, Z. F., Deng, Y., Ning, C., Liu, S. M.&Wang, C. Differential gain and gain compression of an overdamped interband cascade laser.Appl. Phys. Lett.119, 081101 (2021)..
Mørk, J., Mark, J.&Tromborg, B. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback.Phys. Rev. Lett.65, 1999–2002 (1990)..
Ye, J., Li, H.&McInerney, J. G. Period-doubling route to chaos in a semiconductor laser with weak optical feedback.Phys. Rev. A47, 2249–2252 (1993)..
Deng, Y.&Wang, C. Rate equation modeling of interband cascade lasers on modulation and noise dynamics.IEEE J. Quantum Electron56, 2300109 (2020)..
Lang, R.&Kobayashi, K. External optical feedback effects on semiconductor injection laser properties.IEEE J. Quantum Electron16, 347–355 (1980)..
Wolf, A., Swift, J. B., Swinney, H. L.&Vastano, J. A. Determining Lyapunov exponents from a time-series.Phys. D.16, 285–317 (1985)..
Wolf, A. Wolf Lyapunov exponent estimation from a time series. MATLAB Central File Exchangehttps://www.mathworks.com/matlabcentral/fileexchange/48084-wolf-lyapunov-exponent-estimation-from-a-time-serieshttps://www.mathworks.com/matlabcentral/fileexchange/48084-wolf-lyapunov-exponent-estimation-from-a-time-series(2014).
Sprott, J. C.Chaos and Time-Series Analysis. (Oxford University Press, 2003).
Ott, E.Chaos in Dynamical Systems. (Cambridge University Press, 2002).
Coldren, L. A., Corzine, S. W.&Masanovic, M. L.Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
Deng, Y., Zhao, B. B., Gu, Y. T.&Wang, C. Relative intensitynoise of a continuous-wave interband cascade laser at room temperature.Opt. Lett.44, 1375–1378 (2019)..
Soibel, A. et al. High-speed operation of interband cascade lasers.Electron. Lett.45, 264–265 (2009)..
Lotfi, H. et al. High-frequency operation of a mid-infrared interband cascade system at room temperature.Appl. Phys. Lett.108, 201101 (2016)..
Schwarz, B. et al. Monolithic frequency comb platform based on interband cascade lasers and detectors.Optica6, 890–895 (2019)..
Capua, A. et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser.Opt. Express15, 5388–5393 (2007)..
Zhou, Y. G., Zhao, X. Y., Cao, C. F., Gong, Q.&Wang, C. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium.Opt. Express26, 28131–28139 (2018)..
Ye, S. Y.&Ohtsubo, J. Experimental investigation of stability enhancement in semiconductor lasers with optical feedback.Opt. Rev.5, 280–284 (1998)..
Lenstra, D. Relaxation oscillation dynamics in semiconductor diode lasers with optical feedback.IEEE Photonics Technol. Lett.25, 591–593 (2013)..
Cohen, J. S., Drenten, R. R.&Verbeeck, B. H. The effect of optical feedback on the relaxation oscillation in semiconductor lasers.IEEE J. Quantum Electron24, 1989–1995 (1988)..
Liu, B., Ruan, Y., Yu, Y., Wang, B.&An, L. Influence of feedback optical phase on the relaxation oscillation frequency of a semiconductor laser and its application.Opt. Express29, 3163–3172 (2021)..
Lin, F. Y.&Liu, J. M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback.Opt. Commun.221, 173–180 (2003)..
Wang, X. G., Zhao, B. B., Deng, Y., Kovanis, V.&Wang, C. Nonlinear dynamics of a quantum cascade laser with tilted optical feedback.Phys. Rev. A103, 023528 (2021)..
Lin, F. Y., Chao, Y. K.&Wu, T. C. Effective bandwidths of broadband chaotic signals.IEEE J. Quantum Electron48, 1010–1014 (2012)..
Zhao, B. B., Wang, X. G., Zhang, J. C.&Wang, C. Relative intensity noise of a mid-infrared quantum cascade laser: insensitivity to optical feedback.Opt. Express27, 26639–26647 (2019)..
Zhao, B. B., Wang, X. G.&Wang, C. Strong optical feedback stabilized quantum cascade laser.ACS Photonics7, 1255–1261 (2020)..
Vaschenko, G. et al. Temporal dynamics of semiconductor lasers with optical feedback.Phys. Rev. Lett.81, 5536–5539 (1998)..
Carr, T. W., Pieroux, D.&Mandel, P. Theory of a multimode semiconductor laser with optical feedback.Phys. Rev. A63, 033817 (2001)..
Koryukin, I. V.&Mandel, P. Dynamics of semiconductor lasers with optical feedback: comparison of multimode models in the low-frequency fluctuation regime.Phys. Rev. A70, 053819 (2004)..
Pan, M. W., Shi, B. P.&Gray, G. R. Semiconductor laser dynamics subject to strong optical feedback.Opt. Lett.22, 166–168 (1997)..
Deng, Y., Zhao, B. B., Wang, X. G.&Wang, C. Narrow linewidth characteristics of interband cascade lasers.Appl. Phys. Lett.116, 201101 (2020)..
Wu, J. G. et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip.Opt. Express21, 23358–23364 (2013)..
Verschaffelt, G., Khoder, M.&Van der Sande, G. Random number generator based on an integrated laser with on-chip optical feedback.Chaos27, 114310 (2017)..
Columbo, L. L.&Brambilla, M. Multimode regimes in quantum cascade lasers with optical feedback.Opt. Express22, 10105–10118 (2014)..
Spitz, O. et al. Free-space communication with directly modulated mid-infrared quantum cascade devices.IEEE J. Sel. Top. Quantum Electron.28, 1200109 (2022)..
Matsui, Y. et al. Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers.Nat. Photonics15, 59–63 (2021)..
Yamaoka, S. et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate.Nat. Photonics15, 28–35 (2021)..
Sterczewski, L. A. et al. Mid-infrared dual-comb spectroscopy with room-temperature bi-functional interband cascade lasers and detectors.Appl. Phys. Lett.116, 141102 (2020)..
Rodriguez, E. et al. Room-temperature, wide-band, quantum well infrared photodetector for microwave optical links at 4.9 μm wavelength.ACS Photonics5, 3689–3694 (2018)..
Liu, G.&Chuang, S. L. Modeling of Sb-based type-II quantum cascade lasers.Phys. Rev. B65, 165220 (2002)..
Forouhar, S. et al. Reliable mid-infrared laterally-coupled distributed-feedback interband cascade lasers.Appl. Phys. Lett.105, 051110 (2014)..
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构