Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
Kenichi Yamashita (yamasita@kit.ac.jp)
纸质出版日期:2022-01-31,
网络出版日期:2022-01-02,
收稿日期:2021-07-08,
修回日期:2021-11-28,
录用日期:2021-12-19
Scan QR Code
Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures[J]. LSA, 2022,11(1):79-86.
Enomoto, S. et al. Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures. Light: Science & Applications, 11, 79-86 (2022).
Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures[J]. LSA, 2022,11(1):79-86. DOI: 10.1038/s41377-021-00701-8.
Enomoto, S. et al. Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures. Light: Science & Applications, 11, 79-86 (2022). DOI: 10.1038/s41377-021-00701-8.
Lead-halide perovskites are highly promising for various optoelectronic applications
including laser devices. However
fundamental photophysics explaining the coherent-light emission from this material system is so intricate and often the subject of debate. Here
we systematically investigate photoluminescence properties of all-inorganic perovskite microcavity at room temperature and discuss the excited state and the light–matter coupling regime depending on excitation density. Angle-resolved photoluminescence clearly exhibits that the microcavity system shows a transition from weak coupling regime to strong coupling regime
revealing the increase in correlated electron–hole pairs. With pumping fluence above the threshold
the photoluminescence signal shows a lasing behavior with bosonic condensation characteristics
accompanied by long-range phase coherence. The excitation density required for the lasing behavior
however
is found to exceed the Mott density
excluding the exciton as the excited state. These results demonstrate that the polaritonic Bardeen–Cooper–Schrieffer state originates the strong coupling formation and the lasing behavior.
Stranks, S. D.&Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices.Nat. Nanotechnol.10, 391–402 (2015)..
Shah, S. A. A. et al. Progress towards high-efficiency and stable tin-based perovskite solar cells.Energies13, 5092 (2020)..
Tan, Z. -K. et al. Bright light-emitting diodes based on organometal halide perovskite.Nat. Nanotechnol.9, 687–692 (2014)..
Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures.Nat. Photon13, 760–764 (2019)..
Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors.J. Phys. Chem. Lett.5, 1421–1426 (2014)..
Quan, L. N., Pelayo García de Arquer, F., Sabatini, R. P.&Sargent, E. H. Perovskites for light emission.Adv. Mater.30, 1801996 (2018)..
Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing.Nat. Mater.13, 476–480 (2014)..
Chen, S.&Nurmikko, A. Excitonic gain and laser emission from mixed-cation halide perovskite thin films.Optica5, 1141–1149 (2018)..
Brenner, P. et al. Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures.Appl. Phys. Lett.109, 141106 (2016)..
Whitworth, G. L. et al. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites.Opt. Express24, 23677–23684 (2016)..
Zhang, Q., Ha, S. T., Liu, X., Sum, T. C.&Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers.Nano Lett.14, 5995–6001 (2014)..
Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors.Nat. Mater.14, 636–642 (2015)..
Akkerman, Q. A., Rainò, G., Kovalenko, M. V.&Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals.Nat. Mater.17, 394–405 (2018)..
Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets.Nano Lett.17, 3982–3988 (2017)..
Bao, W. et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity.Proc. Natl Acad. Sci. USA116, 20274–20279 (2019)..
Weisbuch, C., Nishioka, M., Ishikawa, A.&Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity.Phys. Rev. Lett.69, 3314–3317 (1992)..
Lidzey, D. G. et al. Strong exciton-photon coupling in an organic semiconductor microcavity.Nature395, 53–55 (1998)..
Goto, K., Yamashita, K., Yanagi, H., Yamao, T.&Hotta, S. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation.Appl. Phys. Lett.109, 061101 (2016)..
Deng, H., Haug, H.&Yamamoto, Y. Exciton-polariton Bose-Einstein condensation.Rev. Mod. Phys.82, 1489–1537 (2010)..
Kavokin, A. V., Baumberg, J. J., Malpuech, G.&Laussy, F. P.Microcavities(Oxford University Press, 2017).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons.Nature443, 409–414 (2006)..
Sanvitto, D.&Kéna-Cohen, S. The road towards polaritonic devices.Nat. Mater.15, 1061–1073 (2016)..
Berlo, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators.Nat. Mater.16, 1120–1126 (2016)..
Zasedatelev, A. V. et al. A room-temperature organic polariton transistor.Nat. Photon13, 378–383 (2019)..
Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom.Nature436, 87–90 (2005)..
Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states.Phys. Rev. Appl.2, 034007 (2014)..
Jiang, Y., Wang, X.&Pan, A. Properties of excitons and photogenerated charge carriers in metal halide perovskites.Adv. Mater.22, 1806671 (2019)..
Schlaus, A. P., Spencer, M. S.&Zhu, X. -Y. Light-matter interaction and lasing in lead halide perovskites.Acc. Chem. Res.52, 2950–2959 (2019)..
Schlaus, A. P. et al. How lasing happens in CsPbBr3perovskite nanowires.Nat. Commun.10, 265 (2019)..
Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature.Nat. Phys.16, 301–306 (2020)..
Saba, M., Quochi, F.&Bongiovanni, G. Excited state properties of hybrid perovskites.Acc. Chem. Res.49, 166–173 (2016)..
Weng, G. et al. Electron-hole plasma lasing dynamics in CsPbClmBr3-mmicroplate lasers.ACS Photon8, 787–797 (2021)..
Nozières, P.&Schmitt-Rink, S. Bose condensation in an attractive Fermion gas: from weak to strong coupling superconductivity.J. Low. Temp. Phys.59, 195–211 (1985)..
Kremp, D., Semkat, D.&Henneberger, K. Quantum condensation in electron-hole plasmas.Phys. Rev. B75, 125315 (2008)..
Kamide, K.&Ogawa, T. What determines the wave function of electron-hole pairs in polariton condensates?Phys. Rev. Lett.105, 056401 (2010)..
Murotani, Y. et al. Light-driven electron-hole Bardeen-Cooper-Schrieffer-like state in bulk GaAs.Phys. Rev. Lett.123, 19740 (2019)..
Keeling, J., Eastham, P. R., Szymanska, M. H.&Littlewood, P. B. BCS-BEC crossover in a system of microcavity polaritons.Phys. Rev. B72, 115320 (2005)..
Byrnes, T., Horikiri, T., Ishida, N.&Yamamoto, Y. BCS wave-function approach to the BEC-BCS crossover of exciton-polariton condensate.Phys. Rev. Lett.105, 186402 (2010)..
Horikiri, T. et al. High-energy side-peak emission of exciton polariton condensate in high density regime.Sci. Rep.6, 25655 (2016)..
Hu, J. et al. Polariton laser in the Bardeen-Cooper-Schrieffer regime.Phys. Rev. X11, 011018 (2021)..
Yang, Z. et al. Large and ultrastable all-inorganic CsPbBr3monocrystalline films: low-temperature growth and application for high-performance photodetectors.Adv. Mater.30, 1802110 (2018)..
Fujiwara, K. et al. Excitation dynamics in layered lead halide perovskite crystal slabs and microcavities.ACS Photon7, 845–852 (2020)..
Dursun, I. et al. Efficient photon recycling and radiation trapping in cesium lead halide perovskite waveguides.ACS Energy Lett.3, 1492–1498 (2018)..
Ryu, H. et al. Role of the A-site cation in low-temperature optical behaviour of APbBr3(A = Cs, CH3NH3).J. Am. Chem. Soc.143, 2340–2347 (2020)..
Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires.Proc. Natl Acad. Sci. USA113, 1993–1998 (2016)..
Safdar, A., Wang, Y.&Krauss, T. F. Random lasing in uniform perovskite thin films.Opt. Express26, A75–A84 (2018)..
Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets.Adv. Funct. Mater.26, 6238–6245 (2016)..
Palmieri, T. et al. Mahan excitons in room-temperature methylammonium lead bromide perovskites.Nat. Commun.11, 850 (2020)..
Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities.Phys. Rev. Lett.98, 126405 (2007)..
Kéna-Cohen, S.&Forrest, S.R. Room-temperature polariton lasing in an organic single-crystal microcavity.Nat. Photon4, 371–375 (2010)..
Yamashita, K. et al. Ultrafast dynamics of polariton cooling and renormalization in an organic single-crystal microcavity under nonresonant pumping.ACS Photon5, 2182–2188 (2018)..
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut.Nano Lett.15, 3692–3696 (2015)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构