1.College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
2.State Key Laboratory of Pulsed Power Laser Technology, Changsha, 410073, China
3.Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, 410073, China
4.Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
Zefeng Wang (zefengwang_nudt@163.com)
纸质出版日期:2022-01-31,
网络出版日期:2022-01-13,
收稿日期:2021-09-13,
修回日期:2021-12-09,
录用日期:2021-12-23
Scan QR Code
Towards high-power mid-IR light source tunable from 3.8 to 4.5 µm by HBr-filled hollow-core silica fibres[J]. LSA, 2022,11(1):101-113.
Zhou, Z. Y. et al. Towards high-power mid-IR light source tunable from 3.8 to 4.5 µm by HBr-filled hollow-core silica fibres. Light: Science & Applications, 11, 101-113 (2019).
Towards high-power mid-IR light source tunable from 3.8 to 4.5 µm by HBr-filled hollow-core silica fibres[J]. LSA, 2022,11(1):101-113. DOI: 10.1038/s41377-021-00703-6.
Zhou, Z. Y. et al. Towards high-power mid-IR light source tunable from 3.8 to 4.5 µm by HBr-filled hollow-core silica fibres. Light: Science & Applications, 11, 101-113 (2019). DOI: 10.1038/s41377-021-00703-6.
Fibre lasers operating at the mid-IR have attracted enormous interest due to the plethora of applications in defence
security
medicine
and so on. However
no continuous-wave (CW) fibre lasers beyond 4 μm based on rare-earth-doped fibres have been demonstrated thus far. Here
we report efficient mid-IR laser emission from HBr-filled silica hollow-core fibres (HCFs) for the first time. By pumping with a self-developed thulium-doped fibre amplifier seeded by several diode lasers over the range of 1940–1983 nm
narrow linewidth mid-IR emission from 3810 to 4496 nm has been achieved with a maximum laser power of about 500 mW and a slope efficiency of approximately 18%. To the best of our knowledge
the wavelength of 4496 nm with strong absorption in silica-based fibres is the longest emission wavelength from a CW fibre laser
and the span of 686 nm is also the largest tuning range achieved to date for any CW fibre laser. By further reducing the HCF transmission loss
increasing the pump power
improving the coupling efficiency
and optimizing the fibre length together with the pressure
the laser efficiency and output power are expected to increase significantly. This work opens new opportunities for broadly tunable high-power mid-IR fibre lasers
especially beyond 4 μm.
Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser.Nat. Photonics6, 423-431 (2012)..
Jauregui, C., Limpert, J.&Tünnermann, A. High-power fibre lasers.Nat. Photonics7, 861-867 (2013)..
Tokita, S. et al. Stable 10 W Er: ZBLAN fiber laser operating at 2.71-2.88 μm.Opt. Lett.35, 3943-3945 (2010)..
Li, J., Hudson, D. D.&Jackson, S. D. High-power diode-pumped fiber laser operating at 3 µm.Opt. Lett.36, 3642-3644 (2011)..
Fortin, V. et al. 30 W fluoride glass all-fiber laser at 2.94 μm.Opt. Lett.40, 2882-2885 (2015)..
Crawford, S., Hudson, D. D.&Jackson, S. D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss.IEEE Photonics J.7, 1502309 (2015)..
Henderson-Sapir, O., Jackson, S. D.&Ottaway, D. J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser.Opt. Lett.41, 1676-1679 (2016)..
Maes, F. et al. 5.6 W monolithic fiber laser at 355 μm.Opt. Lett.42, 2054-2057 (2017)..
Woodward, R. I. et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency.Opt. Lett.43, 1471-1474 (2018)..
Majewski, M. R., Woodward, R. I.&Jackson, S. D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 to 3.4 μm, pumped at 1.7 μm.Opt. Lett.43, 971-974 (2018)..
Aydin, Y. O. et al. Towards power scaling of 2.8 μm fiber lasers.Opt. Lett.43, 4542-4545 (2018)..
Maes, F. et al. Room-temperature fiber laser at 3.92 μm.Optica5, 761-764 (2018)..
Maes, F. et al. 3.42 μm lasing in heavily-erbium-doped fluoride fibers.Opt. Express27, 2170-2183 (2019)..
Fortin, V. et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm.Opt. Lett.44, 491-494 (2019)..
Shiryaev, V. S. et al. Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm.J. Non-Crystalline Solids567, 120939 (2021)..
Pryamikov, A. D. et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region>3.5 μm.Opt. Express19, 1441-1448 (2011)..
Yu, F., Wadsworth, W. J.&Knight, J. C. Low loss silica hollow core fibers for 3-4 μm spectral region.Opt. Express20, 11153-11158 (2012)..
Yu, F.&Knight, J. C. Negative curvature hollow-core optical fiber.IEEE J. Sel. Top. Quantum Electron.22, 4400610 (2016)..
Ding, W. et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications.IEEE J. Sel. Top. Quantum Electron.26, 4400312 (2020)..
Jones, A. M. et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion.Opt. Express19, 2309-2316 (2011)..
Nampoothiri, A. V. V. et al. Hollow-core optical fiber gas lasers (HOFGLAS): A review [Invited].Optical Mater. Express2, 948-961 (2012)..
Jones, A. M. et al. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers. InProceedings of SPIE 8237, Fiber Lasers IX82373Y (SPIE, San Francisco, USA, 2012)..
Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air.Science285, 1537-1539 (1999)..
Russell, P. S. J. et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics.Nat. Photonics8, 278-286 (2014)..
Yang, F., Gyger, F.&Thévenaz, L. Intense Brillouin amplification in gas using hollow-core waveguides.Nat. Photonics14, 700-708 (2020)..
Gladyshev, A. V. et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by 1H2/D2Gas Mixture.IEEE J. Sel. Top. Quantum Electron.24, 0903008 (2018)..
Li, Z. X. et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm.Opt. Lett.43, 4671-4674 (2018)..
Gladyshev, A. V. et al. 4.4-μm Raman laser based on hollow-core silica fibre.Quantum Electron.47, 491-494 (2017)..
Astapovich, M. S. et al. Watt-level nanosecond 4.42 μm Raman laser based on silica fiber.IEEE Photonics Technol. Lett.31, 78-81 (2019)..
Aghbolagh, F. B. A. et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm.Opt. Lett.44, 383-386 (2019)..
Wang, Z. F. et al. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber.Opt. Express22, 21872-21878 (2014)..
Hassan, M. R. A. et al. Cavity-based mid-IR fiber gas laser pumped by a diode laser.Optica3, 218-221 (2016)..
Xu, M. R., Yu, F.&Knight, J. Mid-infrared 1 W hollow-core fiber gas laser source.Opt. Lett.42, 4055-4058 (2017)..
Dadashzadeh, N. et al. Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR.Opt. Express25, 13351-13358 (2017)..
Zhou, Z. Y. et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers.Opt. Express26, 19144-19153 (2018)..
Xu, M. R. et al. Continuous-wave mid-Infrared gas fiber lasers.IEEE J. Sel. Top. Quantum Electron.24, 0902308 (2018)..
Cui, Y. L. et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers.Optica6, 951-954 (2019)..
Miller, H. C., Radzykewycz, D. T.&Hager, G. An optically pumped mid-infrared HBr laser.IEEE J. Quantum Electron.30, 2395-2400 (1994)..
Kletecka, C. S. et al. Cascade lasing of molecular HBr in the four micron region pumped by a Nd: YAG laser.IEEE J. Quantum Electron.40, 1471-1477 (2004)..
Botha, L. R. et al. Ho: YLF pumped HBr laser.Opt. Express17, 20615-20622 (2009)..
Koen, W. et al. Optically pumped tunable HBr laser in the mid-infrared region.Opt. Lett.39, 3563-3566 (2014)..
Koen, W. et al. Optically pumped HBr master oscillator power amplifier operating in the mid-infrared region.J. Optical Soc. Am. B37, A154-A162 (2020)..
Rothman, L. S. et al. HITRAN spectroscopic database.https://hitran.iao.ru/bands/simlaunch?mol=16https://hitran.iao.ru/bands/simlaunch?mol=16(2013)
Banwell, C. N.Fundamentals of Molecular Spectroscopy2nd edn (McGraw-Hill, 1972).
Selleri, S. et al. Complex FEM modal solver of optical waveguides with PML boundary conditions.Optical Quantum Electron.33, 359-371 (2001)..
Chen, Y. B. et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm.Opt. Express25, 20944-20949 (2017)..
Lane, R. A.&Madden, T. J. Numerical investigation of pulsed gas amplifiers operating in hollow-core optical fibers.Opt. Express26, 15693-15704 (2018)..
Ratanavis, A. et al. Performance and spectral tuning of optically overtone pumped molecular lasers.IEEE J. Quantum Electron.45, 488-498 (2009)..
Benabid, F. et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres.Nature434, 488-491 (2005)..
Xie, S., Pennetta, R.&Russell, P. S. J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber.Optica3, 277-282 (2016)..
Yu, R. W. et al. Robust mode matching between structurally dissimilar optical fiber waveguides.ACS Photonics8, 857-863 (2021)..
Carcreff, J. et al. Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform.Optical Mater. Express11, 198-209 (2021)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构