1.NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
2.Present address: Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Thun, Switzerland
Rohit Chikkaraddy (rc621@cam.ac.uk)
Jeremy J. Baumberg (jjb12@cam.ac.uk)
纸质出版日期:2022-01-31,
网络出版日期:2022-01-19,
收稿日期:2021-07-12,
修回日期:2021-11-15,
录用日期:2022-01-05
Scan QR Code
Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities[J]. LSA, 2022,11(1):127-135.
Chikkaraddy, R. et al. Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities. Light: Science & Applications, 11, 127-135 (2022).
Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities[J]. LSA, 2022,11(1):127-135. DOI: 10.1038/s41377-022-00709-8.
Chikkaraddy, R. et al. Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities. Light: Science & Applications, 11, 127-135 (2022). DOI: 10.1038/s41377-022-00709-8.
Recent developments in surface-enhanced Raman scattering (SERS) enable observation of single-bond vibrations in real time at room temperature. By contrast
mid-infrared (MIR) vibrational spectroscopy is limited to inefficient slow detection. Here we develop a new method for MIR sensing using SERS. This method utilizes nanoparticle-on-foil (NPoF) nanocavities supporting both visible and MIR plasmonic hotspots in the same nanogap formed by a monolayer of molecules. Molecular SERS signals from individual NPoF nanocavities are modulated in the presence of MIR photons. The strength of this modulation depends on the MIR wavelength
and is maximized at the 6–12 μm absorption bands of SiO
2
or polystyrene placed under the foil. Using a single-photon lock-in detection scheme we time-resolve the rise and decay of the signal in a few 100 ns. Our observations reveal that the phonon resonances of SiO
2
can trap intense MIR surface plasmons within the Reststrahlen band
tuning the visible-wavelength localized plasmons by reversibly perturbing the localized few-nm-thick water shell trapped in the nanostructure crevices. This suggests new ways to couple nanoscale bond vibrations for optomechanics
with potential to push detection
limits down to single-photon and single-molecule regimes.
Cheng, J. X.&Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine.Science350, 6264 (2015)..
Huth, F. et al. Infrared-spectroscopic nanoimaging with a thermal source.Nat. Mater.10, 352-356 (2011)..
O'Callahan, B. T. et al. Photoinduced tip-sample forces for chemical nanoimaging and spectroscopy.Nano Lett.18, 5499-5505 (2018)..
Low, T. et al. Polaritons in layered two-dimensional materials.Nat. Mater.16, 182-194 (2017)..
Song, B. et al. Enhancement of near-field radiative heat transfer using polar dielectric thin films.Nat. Nanotechnol.10, 253-258 (2015)..
Basov, D. N., Fogler, M. M.&de Abajo, J. F. G. Polaritons in van der Waals materials.Science354, aag1992 (2016)..
Dorling, K. M.&Baker, M. J. Rapid FTIR chemical imaging: highlighting FPA detectors.Trends Biotechnol.31, 437-438 (2013)..
Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials.Nat. Protoc.9, 1771-1791 (2014)..
Dam, J. S., Tidemand-Lichtenberg, P.&Pedersen, C. Room-temperature mid-infrared single-photon spectral imaging.Nat. Photonics6, 788-793 (2012)..
Kviatkovsky, I. et al. Microscopy with undetected photons in the mid-infrared.Sci. Adv.6, eabd0264 (2010)..
Junaid, S. et al. Video-rate, mid-infrared hyperspectral upconversion imaging.Optica6, 702-708 (2019)..
Knez, D. et al. Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras.Light. : Sci. Appl.9, 125 (2020)..
Kutas, M. et al. Quantum-inspired terahertz spectroscopy with visible photons.Optica8, 438-441 (2021)..
Lindner, C. et al. Nonlinear interferometer for Fourier-transform mid-infrared gas spectroscopy using near-infrared detection.Opt. Express29, 4035-4047 (2021)..
Tidemand-Lichtenberg, P. et al. Mid-infrared upconversion spectroscopy.J. Opt. Soc. Am. B33, D28-D35 (2016)..
Wang, L. et al. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy.Sci. Adv.3, e1700255 (2017)..
Anderson, M. S. Infrared spectroscopy with an atomic force microscope.Appl. Spectrosc.54, 349-352 (2000)..
Bai, Y. R., Yin, J. Z.&Cheng, J. X. Bond-selective imaging by optically sensing the mid-infrared photothermal effect.Sci. Adv.7, eabg1559 (2021)..
Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer.Nature507, 81-85 (2014)..
Belacel, C. et al. Optomechanical terahertz detection with single meta-atom resonator.Nat. Commun.8, 1578 (2017)..
Roelli, P. et al. Molecular platform for frequency upconversion at the single-photon level.Phys. Rev. X10, 031057 (2020)..
Xomalis, A. et al. Detecting mid-infrared light by molecular frequency upconversion with dual-wavelength hybrid nanoantennas.Science374, 1268 (2021)..
Zhang, Y., Aizpurua, J.&Esteban, R. Optomechanical collective effects in surface-enhanced Raman scattering from many molecules.ACS Photonics7, 1676-1688 (2020)..
Neuman, T. et al. Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model.Phys. Rev. A100, 043422 (2019)..
Rodrigo, D. et al. Self-similar multiresonant nanoantenna arrays for sensing from near- to mid-infrared.ACS Photonics5, 4903-4911 (2018)..
Le, F. et al. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.ACS Nano2, 707-718 (2008)..
Neubrech, F. et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas.Chem. Rev.117, 5110-5145 (2017)..
Huh, J. H., Lee, J.&Lee, S. Soft plasmonic assemblies exhibiting unnaturally high refractive index.Nano Lett.20, 4768-4774 (2020)..
Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation.Nat. Mater.9, 193-204 (2010)..
Xu, Y. et al. Light-matter interaction within extreme dimensions: from nanomanufacturing to applications.Adv. Opt. Mater.6, 1800444 (2018)..
Gramotnev, D. K.&Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation.Nat. Photonics8, 13-22 (2014)..
Urbieta, M. et al. Atomic-scale lightning rod effect in plasmonic picocavities: a classical view to a quantum effect.ACS Nano12, 585-595 (2018)..
Chikkaraddy, R. et al. How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror.ACS Photonics4, 469-475 (2017)..
Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps.Nat. Mater.18, 668-678 (2019)..
Kongsuwan, N. et al. Plasmonic nanocavity modes: from near-field to far-field radiation.ACS Photonics7, 463-471 (2020)..
Chikkaraddy, R.&Baumberg, J. J. Accessing plasmonic hotspots using nanoparticle-on-foil constructs.ACS Photonics8, 2811-2817 (2021)..
Benz, F. et al. SERS of individual nanoparticles on a mirror: size does matter, but so does shape.J. Phys. Chem. Lett.7, 2264-2269 (2016)..
Xomalis, A. et al. Controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities.ACS Nano14, 10562-10568 (2020)..
Carnegie, C. et al. Flickering nanometre-scale disorder in a crystal lattice tracked by plasmonic flare light emission.Nat. Commun.11, 682 (2020)..
Carnegie, C. et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries.J. Phys. Chem. Lett.9, 7146-7151 (2018)..
Jakob, L. A. et al. Single-photon multiclock lock-in detection by picosecond timestamping.Optica8, 1646 (2021)..
Amarie, S.&Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy.Phys. Rev. B83, 045404 (2011)..
Li, P. N. et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material.Nat. Mater.15, 870-875 (2016)..
Baffou, G. et al. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics.Light. : Sci. Appl.9, 108 (2020)..
Aleshire, K. et al. Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires.Proc. Natl Acad. Sci. USA117, 2288-2293 (2020)..
Asay, D. B.&Kim, S. H. Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient.J. Chem. Phys.124, 174712 (2006)..
Turner, A. F., Chang, L.&Martin, T. P. Enhanced reflectance of reststrahlen reflection filters.Appl. Opt.4, 927-933 (1965)..
Freitag, M. et al. Substrate-sensitive mid-infrared photoresponse in graphene.ACS Nano8, 8350-8356 (2014)..
Autore, M. et al. Substrate matters: surface-polariton enhanced infrared nanospectroscopy of molecular vibrations.Nano Lett.19, 8066-8073 (2019)..
Alves, F. et al. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber.Opt. Lett.37, 1886-1888 (2012)..
Todorov, Y. et al. Ultrastrong light-matter coupling regime with polariton dots.Phys. Rev. Lett.105, 196402 (2010)..
Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors.Nat. Mater.11, 865-871 (2012)..
Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial.Science335, 1323-1326 (2012)..
Chikkaraddy, R. et al. Dynamics of deterministically positioned single-bond surface-enhanced Raman scattering from DNA origami assembled in plasmonic nanogaps.J. Raman Spectrosc.52, 348-354 (2021)..
Benz, F. et al. Single-molecule optomechanics in "picocavities".Science354, 726-729 (2016)..
Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out.Nat. Nanotechnol.13, 797-801 (2018)..
Shi, J. H. et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy.Nat. Photonics13, 609-615 (2019)..
Shishkov, V. Y. et al. Enhancement of the Raman effect by infrared pumping.Phys. Rev. Lett.122, 153905 (2019)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构