Optical metrology embraces deep learning: keeping an open mind[J]. LSA, 2022,11(6):1023-1025.
Pan, B. Optical metrology embraces deep learning: keeping an open mind. Light: Science & Applications, 11, 1023-1025 (2022).
Optical metrology embraces deep learning: keeping an open mind[J]. LSA, 2022,11(6):1023-1025. DOI: 10.1038/s41377-022-00829-1.
Pan, B. Optical metrology embraces deep learning: keeping an open mind. Light: Science & Applications, 11, 1023-1025 (2022). DOI: 10.1038/s41377-022-00829-1.
Optical metrology embraces deep learning: keeping an open mind
Optical metrology practitioners ought to embrace deep learning with an open mind
while devote continuing effortsto look for its theoretical groundwork and maintain an awareness of its limits.
关键词
Keywords
references
LeCun, Y., Bengio, Y.&Hinton, G. Deep learning.Nature521, 436–444 (2015)..
Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry.Nat. Methods16, 67–70 (2019)..
Feng, S. J. et al. Fringe pattern analysis using deep learning.Adv. Photonics1, 025001 (2019)..
Yan, K. T. et al. Fringe pattern denoising based on deep learning.Opt. Commun.437, 148–152 (2019)..
Wang, K. Q. et al. One-step robust deep learning phase unwrapping.Opt. Express27, 15100–15115 (2019)..
Yin, W. et al. Temporal phase unwrapping using deep learning.Sci. Rep.9, 20175 (2019)..
Qian, J. M. et al. Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement.APL Photonics5, 046105 (2020)..
Li, Y. X. et al. Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement.Opto-Electron. Adv.5, 210021 (2022)..
Zuo, C. et al. Deep learning in optical metrology: a review.Light Sci. Appl.11, 39 (2022)..
Feng, S. J. et al. Deep-learning-based fringe-pattern analysis with uncertainty estimation.Optica8, 1507–1510 (2021)..