1.School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
2.Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou 215123, China
Sheng Cao (caosheng@gxu.edu.cn)
Yunjun Wang (yjwt@mesolight.cc)
Jialong Zhao (zhaojl@gxu.edu.cn)
Scan for full text
Peng Yu, Sheng Cao, Yuliang Shan, 等. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component[J]. Light: Science & Applications, 2022,11(7):1454-1463.
Yu, P. et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light: Science & Applications, 11, 1454-1463 (2022).
Peng Yu, Sheng Cao, Yuliang Shan, 等. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component[J]. Light: Science & Applications, 2022,11(7):1454-1463. DOI: 10.1038/s41377-022-00855-z.
Yu, P. et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light: Science & Applications, 11, 1454-1463 (2022). DOI: 10.1038/s41377-022-00855-z.
InP-based quantum dot light-emitting diodes (QLEDs), as less toxic than Cd-free and Pb-free optoelectronic devices, have become the most promising benign alternatives for the next generation lighting and display. However, the development of green-emitting InP-based QLEDs still remains a great challenge to the environmental preparation of InP quantum dots (QDs) and superior device performance. Herein, we reported the highly efficient green-emitting InP-based QLEDs regulated by the inner alloyed shell components. Based on the environmental phosphorus tris(dimethylamino)phosphine ((DMA),3,P), we obtained highly efficient InP-based QDs with the narrowest full width at half maximum (~35 nm) and highest quantum yield (~97%) by inserting the gradient inner shell layer ZnSe,x,S,1−x, without further post-treatment. More importantly, we concretely discussed the effect and physical mechanism of ZnSe,x,S,1–,x, layer on the performance of QDs and QLEDs through the characterization of structure, luminescence, femtosecond transient absorption, and ultraviolet photoelectron spectroscopy. We demonstrated that the insert inner alloyed shell ZnSe,x,S,1−,x, provided bifunctionality, which diminished the interface defects upon balancing the lattice mismatch and tailored the energy levels of InP-based QDs which could promote the balanced carrier injection. The resulting QLEDs applying the InP/ZnSe,0.7,S,0.3,/ZnS QDs as an emitter layer exhibited a maximum external quantum efficiency of 15.2% with the electroluminescence peak of 532 nm, which was almost the highest record of InP-based pure green-emitting QLEDs. These results demonstrated the applicability and processability of inner shell component engineering in the preparation of high-quality InP-based QLEDs.
Y. H. Won , 等 . Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes . Nature , 2019 . 575 634 -638 . DOI:10.1038/s41586-019-1771-5http://doi.org/10.1038/s41586-019-1771-5 .
X. Y. Yang , 等 . Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes . Adv. Mater. , 2012 . 24 4180 -4185 . DOI:10.1002/adma.201104990http://doi.org/10.1002/adma.201104990 .
F. Cao , 等 . A layer-by-layer growth strategy for large-size InP/ZnSe/ZnS core–shell quantum dots enabling high-efficiency light-emitting diodes . Chem. Mater. , 2018 . 30 8002 -8007 . DOI:10.1021/acs.chemmater.8b03671http://doi.org/10.1021/acs.chemmater.8b03671 .
P. Liu , 等 . Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications . Adv. Funct. Mater. , 2021 . 31 2008453 DOI:10.1002/adfm.202008453http://doi.org/10.1002/adfm.202008453 .
H. B. Shen , 等 . High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes . Nano Lett. , 2015 . 15 1211 -1216 . DOI:10.1021/nl504328fhttp://doi.org/10.1021/nl504328f .
J. L. Zhao , 等 . Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer . Nano Lett. , 2006 . 6 463 -467 . DOI:10.1021/nl052417ehttp://doi.org/10.1021/nl052417e .
H. Y. Xiang , 等 . Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer . Light. Sci. Appl. , 2021 . 10 206 DOI:10.1038/s41377-021-00640-4http://doi.org/10.1038/s41377-021-00640-4 .
C. B. Jiang , 等 . Fully solution-processed tandem white quantum-dot light-emitting diode with an external quantum efficiency exceeding 25% . ACS Nano , 2018 . 12 6040 -6049 . DOI:10.1021/acsnano.8b02289http://doi.org/10.1021/acsnano.8b02289 .
R. G. Xie , 等 . Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals . J. Am. Chem. Soc. , 2005 . 127 7480 -7488 . DOI:10.1021/ja042939ghttp://doi.org/10.1021/ja042939g .
R. G. Xie , D. Battaglia , X. G. Peng . Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared . J. Am. Chem. Soc. , 2007 . 129 15432 -15433 . DOI:10.1021/ja076363hhttp://doi.org/10.1021/ja076363h .
L. S. Wang , 等 . Blue quantum dot light-emitting diodes with high electroluminescent efficiency . ACS Appl. Mater. Interfaces , 2017 . 9 38755 -38760 . DOI:10.1021/acsami.7b10785http://doi.org/10.1021/acsami.7b10785 .
Y. B. Zhu , 等 . Ultrahighly efficient white quantum dot light-emitting diodes operating at low voltage . Adv. Optical Mater. , 2020 . 8 2001479 DOI:10.1002/adom.202001479http://doi.org/10.1002/adom.202001479 .
H. W. Chen , J. He , S. T. Wu . Recent advances on quantum-dot-enhanced liquid-crystal displays . IEEE J. Sel. Top. Quantum Electron. , 2017 . 23 1900611 .
B. Chen , D. Y. Li , F. Wang . InP quantum dots: synthesis and lighting applications . Small , 2020 . 16 2002454 DOI:10.1002/smll.202002454http://doi.org/10.1002/smll.202002454 .
E. Jang , 等 . Environmentally friendly InP-based quantum dots for efficient wide color gamut displays . ACS Energy Lett. , 2020 . 5 1316 -1327 . DOI:10.1021/acsenergylett.9b02851http://doi.org/10.1021/acsenergylett.9b02851 .
X. X. Zhu , 等 . Broadband perovskite quantum dot spectrometer beyond human visual resolution . Light.: Sci. Appl. , 2020 . 9 73 DOI:10.1038/s41377-020-0301-4http://doi.org/10.1038/s41377-020-0301-4 .
K. H. Kim , 等 . Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity . Chem. Mater. , 2020 . 32 3537 -3544 . DOI:10.1021/acs.chemmater.0c00551http://doi.org/10.1021/acs.chemmater.0c00551 .
Z. H. Wu , 等 . Development of InP quantum dot-based light-emitting diodes . ACS Energy Lett. , 2020 . 5 1095 -1106 . DOI:10.1021/acsenergylett.9b02824http://doi.org/10.1021/acsenergylett.9b02824 .
S. H. Guo , 等 . Boosting efficiency of InP quantum dots-based light-emitting diodes by an In-doped ZnO electron transport layer . IEEE Electron Device Lett. , 2021 . 42 1806 -1809 . DOI:10.1109/LED.2021.3119322http://doi.org/10.1109/LED.2021.3119322 .
Y. C. Wang , 等 . Efficient structure for InP/ZnS-based electroluminescence device by embedding the emitters in the electron-dominating interface . J. Phys. Chem. Lett. , 2020 . 11 1835 -1839 . DOI:10.1021/acs.jpclett.0c00112http://doi.org/10.1021/acs.jpclett.0c00112 .
P. Yu , 等 . Inorganic solid phosphorus precursor of sodium phosphaethynolate for synthesis of highly luminescent InP-Based quantum dots . ACS Energy Lett. , 2021 . 6 2697 -2703 . DOI:10.1021/acsenergylett.1c01067http://doi.org/10.1021/acsenergylett.1c01067 .
X. Y. Li , 等 . Quantum-dot light-Emitting diodes for outdoor displays with high stability at high brightness . Adv. Optical Mater. , 2020 . 8 1901145 DOI:10.1002/adom.201901145http://doi.org/10.1002/adom.201901145 .
S. Kumar , 等 . Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates . Nano Lett. , 2017 . 17 5277 -5284 . DOI:10.1021/acs.nanolett.7b01544http://doi.org/10.1021/acs.nanolett.7b01544 .
S. Kim , 等 . Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes . J. Am. Chem. Soc. , 2012 . 134 3804 -3809 . DOI:10.1021/ja210211zhttp://doi.org/10.1021/ja210211z .
J. H. Jo , 等 . InP-Based quantum dots having an InP core, composition-gradient ZnSeS inner shell, and ZnS outer shell with sharp, bright emissivity, and blue absorptivity for display devices . ACS Appl. Nano Mater. , 2020 . 3 1972 -1980 . DOI:10.1021/acsanm.0c00008http://doi.org/10.1021/acsanm.0c00008 .
J. Park , 等 . Electrochemical charging effect on the optical properties of InP/ZnSe/ZnS quantum dots . Small , 2020 . 16 2003542 DOI:10.1002/smll.202003542http://doi.org/10.1002/smll.202003542 .
H. Zhang , Q. Su , S. M. Chen . Suppressing förster resonance energy transfer in close-packed quantum-dot thin film: toward efficient quantum-dot light-emitting diodes with external quantum efficiency over 21.6% . Adv. Optical Mater. , 2020 . 8 1902092 DOI:10.1002/adom.201902092http://doi.org/10.1002/adom.201902092.
Y. F. Shu , 等 . Quantum dots for display applications . Angew. Chem. Int. Ed. , 2020 . 59 22312 -22323 . DOI:10.1002/anie.202004857http://doi.org/10.1002/anie.202004857 .
H. Moon , 等 . Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes . Chem. Commun. , 2019 . 55 13299 -13302 . DOI:10.1039/C9CC06882Ahttp://doi.org/10.1039/C9CC06882A .
Y. Z. Tan , 等 . Enhancing hole injection by electric dipoles for efficient blue InP QLEDs . Appl. Phys. Lett. , 2021 . 119 221105 DOI:10.1063/5.0071508http://doi.org/10.1063/5.0071508 .
Q. Su , H. Zhang , S. M. Chen . Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes . Appl. Phys. Lett. , 2020 . 117 053502 DOI:10.1063/5.0019790http://doi.org/10.1063/5.0019790 .
W. C. Chao , 等 . High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility . Commun. Mater. , 2021 . 2 96 DOI:10.1038/s43246-021-00203-5http://doi.org/10.1038/s43246-021-00203-5 .
W. D. Zhang , 等 . InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes . Adv. Funct. Mater. , 2020 . 30 2005303 DOI:10.1002/adfm.202005303http://doi.org/10.1002/adfm.202005303 .
J. H. Jo , 等 . Highly bright, narrow emissivity of InP quantum dots synthesized by aminophosphine: effects of double shelling scheme and Ga treatment . Adv. Optical Mater. , 2021 . 9 2100427 DOI:10.1002/adom.202100427http://doi.org/10.1002/adom.202100427 .
S. W. Choi , 等 . Aminophosphine-derived, high-quality red-emissive InP quantum dots by the use of an unconventional in halide . J. Mater. Chem. C , 2022 . 10 2213 -2222 . DOI:10.1039/D1TC06072Dhttp://doi.org/10.1039/D1TC06072D .
L. F. Xi , 等 . Effect of zinc incorporation on the performance of red light emitting InP core nanocrystals . Inorg. Chem. , 2016 . 55 8381 -8386 . DOI:10.1021/acs.inorgchem.6b00747http://doi.org/10.1021/acs.inorgchem.6b00747 .
C. Robert-Goumet , 等 . SEM and XPS studies of nanohole arrays on InP(100) surfaces created by coupling AAO templates and low energy Ar+ ion sputtering . Surf. Sci. , 2009 . 603 2923 -2927 . DOI:10.1016/j.susc.2009.07.006http://doi.org/10.1016/j.susc.2009.07.006 .
M. D. Tessier , 等 . Interfacial oxidation and photoluminescence of InP-based core/shell quantum dots . Chem. Mater. , 2018 . 30 6877 -6883 . DOI:10.1021/acs.chemmater.8b03117http://doi.org/10.1021/acs.chemmater.8b03117 .
J. Park , 等 . Tuning hot carrier dynamics of InP/ZnSe/ZnS quantum dots by shell morphology control . Small , 2022 . 18 2105492 DOI:10.1002/smll.202105492http://doi.org/10.1002/smll.202105492 .
B. W. Zhang , 等 . Ultrafast charge carrier dynamics and nonlinear optical absorption of InP/ZnS core–shell colloidal quantum dots . J. Phys. Chem. C. , 2019 . 123 27207 -27213 . DOI:10.1021/acs.jpcc.9b07092http://doi.org/10.1021/acs.jpcc.9b07092 .
Y. M. Sung , 等 . Increasing the energy gap between band-edge and trap states slows down picosecond carrier trapping in highly luminescent InP/ZnSe/ZnS quantum dots . Small , 2021 . 17 2102792 DOI:10.1002/smll.202102792http://doi.org/10.1002/smll.202102792 .
F. W. Eagle , R. A. Rivera-Maldonado , B. M. Cossairt . Surface chemistry of metal phosphide nanocrystals . Annu. Rev. Mater. Res. , 2021 . 51 541 -564 . DOI:10.1146/annurev-matsci-080819-011036http://doi.org/10.1146/annurev-matsci-080819-011036 .
Z. H. Li , 等 . Carrier dynamics in alloyed chalcogenide quantum dots and their light-emitting devices . Adv. Energy Mater. , 2021 . 11 2101693 DOI:10.1002/aenm.202101693http://doi.org/10.1002/aenm.202101693 .
J. M. Pietryga , 等 . Spectroscopic and device aspects of nanocrystal quantum dots . Chem. Rev. , 2016 . 116 10513 -10622 . DOI:10.1021/acs.chemrev.6b00169http://doi.org/10.1021/acs.chemrev.6b00169 .
S. Narra , 等 . Femtosecond transient absorption spectra and dynamics of carrier relaxation of tin perovskites in the absence and presence of additives . J. Phys. Chem. Lett. , 2020 . 11 5699 -5704 . DOI:10.1021/acs.jpclett.0c01589http://doi.org/10.1021/acs.jpclett.0c01589 .
Z. G. Huang , 等 . Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: toward high-quality blue-green emitters . J. Phys. Chem. Lett. , 2021 . 12 11931 -11938 . DOI:10.1021/acs.jpclett.1c03478http://doi.org/10.1021/acs.jpclett.1c03478 .
K. Wang , 等 . Ruddlesden–popper 2D component to stabilize γ-CsPbI3 perovskite phase for stable and efficient photovoltaics . Adv. Energy Mater. , 2019 . 9 1902529 DOI:10.1002/aenm.201902529http://doi.org/10.1002/aenm.201902529 .
S. Cao , 等 . Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer . ACS Appl. Mater. Interfaces , 2017 . 9 15605 -15614 . DOI:10.1021/acsami.7b03262http://doi.org/10.1021/acsami.7b03262 .
J. L. Zhao , 等 . Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes . J. Appl. Phys. , 2004 . 96 3206 -3210 . DOI:10.1063/1.1784611http://doi.org/10.1063/1.1784611 .
H. Zhang , 等 . High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots . Adv. Optical Mater. , 2019 . 7 1801602 DOI:10.1002/adom.201801602http://doi.org/10.1002/adom.201801602 .
D. Q. Liu , 等 . Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes . J. Phys. Chem. Lett. , 2020 . 11 3111 -3115 . DOI:10.1021/acs.jpclett.0c00836http://doi.org/10.1021/acs.jpclett.0c00836 .
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构