1.State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
2.State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University, 510275 Guangzhou, China
3.School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
Luqi Yuan (yuanluqi@sjtu.edu.cn)
Jianwen Dong (dongjwen@mail.sysu.edu.cn)
Yikai Su (yikaisu@sjtu.edu.cn)
纸质出版日期:2022-11-30,
网络出版日期:2022-10-10,
收稿日期:2022-04-21,
修回日期:2022-09-21,
录用日期:2022-09-25
Scan QR Code
Ultracompact topological photonic switch based on valley-vortex-enhanced high-efficiency phase shift[J]. LSA, 2022,11(11):2646-2654.
Wang, H. W. et al. Ultracompact topological photonic switch based on valley-vortex-enhanced high-efficiency phase shift. Light: Science & Applications, 11, 2646-2654 (2022).
Ultracompact topological photonic switch based on valley-vortex-enhanced high-efficiency phase shift[J]. LSA, 2022,11(11):2646-2654. DOI: 10.1038/s41377-022-00993-4.
Wang, H. W. et al. Ultracompact topological photonic switch based on valley-vortex-enhanced high-efficiency phase shift. Light: Science & Applications, 11, 2646-2654 (2022). DOI: 10.1038/s41377-022-00993-4.
Topologically protected edge states based on valley photonic crystals (VPCs) have been widely studied
from theoretical verification to technical applications. However
research on integrated tuneable topological devices is still lacking. Here
we study the phase-shifting theory of topological edge modes based on a VPC structure. Benefiting from the phase vortex formed by the VPC structure
the optical path of the topological edge mode in the propagation direction is approximately two-fold that of the conventional optical mode in a strip waveguide. In experiments
we show a 1.57-fold improvement in π-phase tuning efficiency. By leveraging the high-efficiency phase-shifting properties and the sharp-turn features of the topological waveguide
we demonstrate an ultracompact 1 × 2 thermo-optic topological switch (TOTS) operating at telecommunication wavelengths. A switching power of 18.2 mW is needed with an ultracompact device footprint of 25.66 × 28.3 μm in the wavelength range of 1530–1582 nm. To the best of our knowledge
this topological photonic switch is the smallest switch of any dielectric or semiconductor 1 × 2/2 × 2 broadband optical switches
including thermo-optic and electro-optic switches. In addition
a high-speed transmission experiment employing the proposed TOTS is carried out to demonstrate the robust transmission of high-speed data. Our work reveals the phase-shifting mechanism of valley edge modes
which may enable diverse topological functional devices in many fields
such as optical communications
nanophotonics
and quantum information processing.
X. L. Qi , S. C. Zhang . Topological insulators and superconductors . Rev. Mod. Phys. , 2011 . 83 1057 -1110 . DOI:10.1103/RevModPhys.83.1057http://doi.org/10.1103/RevModPhys.83.1057 .
M. Z. Hasan , C. L. Kane . Colloquium: topological insulators . Rev. Mod. Phys. , 2010 . 82 3045 -3067 . DOI:10.1103/RevModPhys.82.3045http://doi.org/10.1103/RevModPhys.82.3045 .
Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors. (Princeton University Press, 2013).
L. Lu , J. D. Joannopoulos , M. Soljačić . Topological photonics . Nat. Photonics , 2014 . 8 821 -829 . DOI:10.1038/nphoton.2014.248http://doi.org/10.1038/nphoton.2014.248 .
T. Ozawa , 等 . Topological photonics . Rev. Mod. Phys. , 2019 . 91 015006 DOI:10.1103/RevModPhys.91.015006http://doi.org/10.1103/RevModPhys.91.015006 .
L. H. Wu , X. Hu . Scheme for achieving a topological photonic crystal by using dielectric material . Phys. Rev. Lett. , 2015 . 114 223901 DOI:10.1103/PhysRevLett.114.223901http://doi.org/10.1103/PhysRevLett.114.223901 .
S. Barik , 等 . Two-dimensionally confined topological edge states in photonic crystals . N. J. Phys. , 2016 . 18 113013 DOI:10.1088/1367-2630/18/11/113013http://doi.org/10.1088/1367-2630/18/11/113013 .
H. Price , 等 . Roadmap on topological photonics . J. Phys. Photonics , 2022 . 4 032501 DOI:10.1088/2515-7647/ac4ee4http://doi.org/10.1088/2515-7647/ac4ee4 .
K. Wang , 等 . Topological complex-energy braiding of non-Hermitian bands . Nature , 2021 . 598 59 -64 . DOI:10.1038/s41586-021-03848-xhttp://doi.org/10.1038/s41586-021-03848-x .
M. Hafezi , 等 . Imaging topological edge states in silicon photonics . Nat. Photonics , 2013 . 7 1001 -1005 . DOI:10.1038/nphoton.2013.274http://doi.org/10.1038/nphoton.2013.274 .
K. J. Fang , Z. F. Yu , S. H. Fan . Realizing effective magnetic field for photons by controlling the phase of dynamic modulation . Nat. Photonics , 2012 . 6 782 -787 . DOI:10.1038/nphoton.2012.236http://doi.org/10.1038/nphoton.2012.236 .
A. B. Khanikaev , 等 . Photonic topological insulators . Nat. Mater. , 2013 . 12 233 -239 . DOI:10.1038/nmat3520http://doi.org/10.1038/nmat3520 .
M. Hafezi , 等 . Robust optical delay lines with topological protection . Nat. Phys. , 2011 . 7 907 -912 . DOI:10.1038/nphys2063http://doi.org/10.1038/nphys2063 .
D. Leykam , L. Q. Yuan . Topological phases in ring resonators: recent progress and future prospects . Nanophotonics , 2020 . 9 4473 -4487 . DOI:10.1515/nanoph-2020-0415http://doi.org/10.1515/nanoph-2020-0415 .
T. Cao , 等 . Dynamically reconfigurable topological edge state in phase change photonic crystals . Sci. Bull. , 2019 . 64 814 -822 . DOI:10.1016/j.scib.2019.02.017http://doi.org/10.1016/j.scib.2019.02.017 .
Z. X. Wang , Y. T. Fang . Switching and tunning of the topological edge states from two-dimensional photonic crystal with liquid crystal medium . Phys. E , 2022 . 142 115240 DOI:10.1016/j.physe.2022.115240http://doi.org/10.1016/j.physe.2022.115240 .
Z. Wang , 等 . Observation of unidirectional backscattering-immune topological electromagnetic states . Nature , 2009 . 461 772 -775 . DOI:10.1038/nature08293http://doi.org/10.1038/nature08293 .
D. Y. Yu , 等 . Topological holographic quench dynamics in a synthetic frequency dimension . Light Sci. Appl. , 2021 . 10 209 DOI:10.1038/s41377-021-00646-yhttp://doi.org/10.1038/s41377-021-00646-y .
A. B. Khanikaev , G. Shvets . Two-dimensional topological photonics . Nat. Photonics , 2017 . 11 763 -773 . DOI:10.1038/s41566-017-0048-5http://doi.org/10.1038/s41566-017-0048-5 .
T. Ma , G. Shvets . All-Si valley-Hall photonic topological insulator . N. J. Phys. , 2016 . 18 025012 DOI:10.1088/1367-2630/18/2/025012http://doi.org/10.1088/1367-2630/18/2/025012 .
W. You , X. Y. Hu , Q. H. Gong . Reconfigurable topological states in valley photonic crystals . Phys. Rev. Mater. , 2018 . 2 122201(R) DOI:10.1103/PhysRevMaterials.2.122201http://doi.org/10.1103/PhysRevMaterials.2.122201 .
G. J. Tang , 等 . Topological photonic crystals: physics, designs, and applications . Laser Photonics Rev. , 2022 . 16 2100300 DOI:10.1002/lpor.202100300http://doi.org/10.1002/lpor.202100300 .
M. I. Shalaev , 等 . Robust topologically protected transport in photonic crystals at telecommunication wavelengths . Nat. Nanotechnol. , 2019 . 14 98 DOI:10.1038/s41565-018-0349-yhttp://doi.org/10.1038/s41565-018-0349-y .
F. Gao , 等 . Topologically protected refraction of robust kink states in valley photonic crystals . Nat. Phys. , 2018 . 14 140 -144 . DOI:10.1038/nphys4304http://doi.org/10.1038/nphys4304 .
Y. Q. Zeng , 等 . Electrically pumped topological laser with valley edge modes . Nature , 2020 . 578 246 -250 . DOI:10.1038/s41586-020-1981-xhttp://doi.org/10.1038/s41586-020-1981-x .
J. W. Ma , X. Xi , X. K. Sun . Topological photonic integrated circuits based on valley kink states . Laser Photonics Rev. , 2019 . 13 1900087 DOI:10.1002/lpor.201900087http://doi.org/10.1002/lpor.201900087 .
X. T. He , 等 . A silicon-on-insulator slab for topological valley transport . Nat. Commun. , 2019 . 10 872 DOI:10.1038/s41467-019-08881-zhttp://doi.org/10.1038/s41467-019-08881-z .
Y. H. Yang , 等 . Terahertz topological photonics for on-chip communication . Nat. Photonics , 2020 . 14 446 -451 . DOI:10.1038/s41566-020-0618-9http://doi.org/10.1038/s41566-020-0618-9 .
M. I. Shalaev , W. Walasik , N. M. Litchinitser . Optically tunable topological photonic crystal . Optica , 2019 . 6 839 -844 . DOI:10.1364/OPTICA.6.000839http://doi.org/10.1364/OPTICA.6.000839 .
G. J. Tang , 等 . Frequency range dependent topological phases and photonic detouring in valley photonic crystals . Phys. Rev. B , 2020 . 102 174202 DOI:10.1103/PhysRevB.102.174202http://doi.org/10.1103/PhysRevB.102.174202 .
H. W. Wang , 等 . Asymmetric topological valley edge states on silicon-on-insulator platform . Laser Photonics Rev. , 2022 . 16 2100631 DOI:10.1002/lpor.202100631http://doi.org/10.1002/lpor.202100631 .
L. Zhang , 等 . Valley kink states and topological channel intersections in substrate-integrated photonic circuitry . Laser Photonics Rev. , 2019 . 13 1900159 DOI:10.1002/lpor.201900159http://doi.org/10.1002/lpor.201900159 .
P. L. Yang , 等 . Topologically protected Mach-Zehnder interferometer . J. Opt. , 2020 . 22 105001 DOI:10.1088/2040-8986/abac20http://doi.org/10.1088/2040-8986/abac20 .
X. J. Cheng , 等 . Robust reconfigurable electromagnetic pathways within a photonic topological insulator . Nat. Mater. , 2016 . 15 542 -548 . DOI:10.1038/nmat4573http://doi.org/10.1038/nmat4573 .
S. T. Chen , 等 . Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers . Opt. Lett. , 2016 . 41 836 -839 . DOI:10.1364/OL.41.000836http://doi.org/10.1364/OL.41.000836 .
G. Kang , 等 . Silicon-based optical phased array using electro-optic p-i-n phase shifters . IEEE Photonics Technol. Lett. , 2019 . 31 1685 -1688 . DOI:10.1109/LPT.2019.2939550http://doi.org/10.1109/LPT.2019.2939550 .
M. B. He , 等 . High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond . Nat. Photonics , 2019 . 13 359 -364 . DOI:10.1038/s41566-019-0378-6http://doi.org/10.1038/s41566-019-0378-6 .
Su, Y. K. & Zhang, Y. Passive Silicon Photonic Devices: Design, Fabrication, and Testing. (AIP Publishing, 2022).
Y. K. Su , 等 . Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications . Adv. Mater. Technol. , 2020 . 5 1901153 DOI:10.1002/admt.201901153http://doi.org/10.1002/admt.201901153 .
M. Thomaschewski , 等 . Plasmonic monolithic lithium niobate directional coupler switches . Nat. Commun. , 2020 . 11 748 DOI:10.1038/s41467-020-14539-yhttp://doi.org/10.1038/s41467-020-14539-y .
C. Wang , 等 . Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages . Nature , 2018 . 562 101 -104 . DOI:10.1038/s41586-018-0551-yhttp://doi.org/10.1038/s41586-018-0551-y .
A. W. Elshaari , 等 . Hybrid integrated quantum photonic circuits . Nat. Photonics , 2020 . 14 285 -298 . DOI:10.1038/s41566-020-0609-xhttp://doi.org/10.1038/s41566-020-0609-x .
H. Xiong , 等 . Topological valley transport of terahertz Phonon−Polaritons in a LiNbO3 Chip . ACS Photonics , 2021 . 8 2737 -2745 . DOI:10.1021/acsphotonics.1c00860http://doi.org/10.1021/acsphotonics.1c00860 .
K. X. Chen , 等 . Broadband optical switch for multiple spatial modes based on a silicon densely packed waveguide array . Opt. Lett. , 2019 . 44 907 -910 . DOI:10.1364/OL.44.000907http://doi.org/10.1364/OL.44.000907 .
T. J. Seok , 等 . Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers . Optica , 2016 . 3 64 -70 . DOI:10.1364/OPTICA.3.000064http://doi.org/10.1364/OPTICA.3.000064 .
Ríos, C. et al. Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials. arXiv https://doi.org/10.48550/arXiv.2105.06010https://doi.org/10.48550/arXiv.2105.06010 (2021).
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构