1.Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
2.School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
3.Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
4.Université Grenoble Alpes, CNRS, CEA-LETI, MINATEC, Grenoble INP, LTM, F-38054 Grenoble, France
Zhaoyu Zhang (zhangzy@cuhk.edu.cn)
Siming Chen (siming.chen@ucl.ac.uk)
Xiankai Sun (xksun@cuhk.edu.hk)
纸质出版日期:2023-11-30,
网络出版日期:2023-10-30,
收稿日期:2023-06-22,
修回日期:2023-09-28,
录用日期:2023-10-04
Scan QR Code
Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon[J]. LSA, 2023,12(11):2451-2458.
Ma, J. W. et al. Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon. Light: Science & Applications, 12, 2451-2458 (2023).
Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon[J]. LSA, 2023,12(11):2451-2458. DOI: 10.1038/s41377-023-01290-4.
Ma, J. W. et al. Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon. Light: Science & Applications, 12, 2451-2458 (2023). DOI: 10.1038/s41377-023-01290-4.
Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics
the concept of topology has recently entered the realm of optics
offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors
Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for robust lasers. Here
we experimentally realize the topological Dirac-vortex microcavity lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave linearly polarized vertical laser emission at a telecom wavelength. We confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size
and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.
Sun, C. et al. Single-chip microprocessor that communicates directly using light.Nature528, 534–538 (2015)..
Rickman, A. The commercialization of silicon photonics.Nat. Photonics8, 579–582 (2014)..
Pavesi, L. et al. Optical gain in silicon nanocrystals.Nature408, 440–444 (2000)..
Wang, Z. C. et al. Room-temperature InP distributed feedback laser array directly grown on silicon.Nat. Photonics9, 837–842 (2015)..
Chen, S. M. et al. Electrically pumped continuous-wave Ⅲ–Ⅴ quantum dot lasers on silicon.Nat. Photonics10, 307–311 (2016)..
Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser.Opt. Express14, 9203–9210 (2006)..
Shi, B. et al. Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon.Optica6, 1507–1514 (2019)..
Wan, Y. T. et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on(001) silicon.Opt. Lett.41, 1664–1667 (2016)..
Zhou, T. J. et al. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001).Nat. Commun.11, 977 (2020)..
Ozawa, T. et al. Topological photonics.Rev. Mod. Phys.91, 015006 (2019)..
Lu, L., Joannopoulos, J. D.&Soljačić,M. Topological photonics.Nat. Photonics8, 821–829 (2014)..
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice.Nat. Photonics11, 651–656 (2017)..
Kim, H. R. et al. Multipolar lasing modes from topological corner states.Nat. Commun.11, 5758 (2020)..
Bandres, M. A. et al. Topological insulator laser: Experiments.Science359, eaar4005 (2018)..
Zeng, Y. Q. et al. Electrically pumped topological laser with valley edge modes.Nature578, 246–250 (2020)..
Chen, Z. G.&Segev, M. Highlighting photonics: looking into the next decade.eLight1, 2 (2021)..
Zhao, H. et al. Topological hybrid silicon microlasers.Nat. Commun.9, 981 (2018)..
Han, C. et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array.Light Sci. Appl.8, 40 (2019)..
Zhang, W. X. et al. Low-threshold topological nanolasers based on the second-order corner state.Light Sci. Appl.9, 109 (2020)..
Han, C., Kang, M. S.&Jeon, H. Lasing at multidimensional topological states in a two-dimensional photonic crystal structure.ACS Photonics7, 2027–2036 (2020)..
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries.Science358, 636–640 (2017)..
Yang, Z. Q. et al. Spin-momentum-locked edge mode for topological vortex lasing.Phys. Rev. Lett.125, 013903 (2020)..
Gong, Y. K. et al. Topological insulator laser using valley-Hall photonic crystals.ACS Photonics7, 2089–2097 (2020)..
Noh, W. et al. Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry.Opt. Lett.45, 4108–4111 (2020)..
Gao, X. M. et al. Dirac-vortex topological cavities.Nat. Nanotechnol.15, 1012–1018 (2020)..
Jackiw, R.&Rossi, P. Zero modes of the vortex-fermion system.Nucl. Phys. B190, 681–691 (1981)..
Noh, J. et al. Braiding photonic topological zero modes.Nat. Phys.16, 989–993 (2020)..
Gao, P. L. et al. Majorana-like zero modes in Kekulé distorted sonic lattices.Phys. Rev. Lett.123, 196601 (2019)..
Hou, C. Y., Chamon, C.&Mudry, C. Electron fractionalization in two-dimensional graphenelike structures.Phys. Rev. Lett.98, 186809 (2007)..
Ma, J. W. et al. Nanomechanical topological insulators with an auxiliary orbital degree of freedom.Nat. Nanotechnol.16, 576–583 (2021)..
Feng, L., El-Ganainy, R.&Ge, L. Non-Hermitian photonics based on parity–time symmetry.Nat. Photonics11, 752–762 (2017)..
Smirnova, D. et al. Nonlinear topological photonics.Appl. Phys. Rev.7, 021306 (2020)..
Mehrabad, M. J. et al. Chiral topological photonics with an embedded quantum emitter.Optica7, 1690–1696 (2020)..
Zhou, T. J. et al. Monolithically integrated ultralow threshold topological corner state nanolasers on silicon.ACS Photonics9, 3824–3830 (2022)..
Yoshida, M. et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser.Nature618, 727–732 (2023)..
Yang, L. C. et al. Topological-cavity surface-emitting laser.Nat. Photonics16, 279–283 (2022)..
Han, S. et al. Photonic Majorana quantum cascade laser with polarization-winding emission.Nat. Commun.14, 707 (2023)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构