1.Photonic Systems Laboratory (PHOSL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
2.Laboratory of Photonics and Quantum Measurements (LPQM), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
3.Almae Technologies, Route de Nozay, 91460 Marcoussis, France
Marco Clementi (marco.clementi@epfl.ch)
Camille-Sophie Brès (camille.bres@epfl.ch)
纸质出版日期:2023-12-31,
网络出版日期:2023-12-08,
收稿日期:2023-07-24,
修回日期:2023-10-10,
录用日期:2023-11-06
Scan QR Code
A chip-scale second-harmonic source via self-injection-locked all-optical poling[J]. LSA, 2023,12(12):2778-2787.
Clementi, M. et al. A chip-scale second-harmonic source via self-injection-locked all-optical poling. Light: Science & Applications, 12, 2778-2787 (2023).
A chip-scale second-harmonic source via self-injection-locked all-optical poling[J]. LSA, 2023,12(12):2778-2787. DOI: 10.1038/s41377-023-01329-6.
Clementi, M. et al. A chip-scale second-harmonic source via self-injection-locked all-optical poling. Light: Science & Applications, 12, 2778-2787 (2023). DOI: 10.1038/s41377-023-01329-6.
Second-harmonic generation allows for coherently bridging distant regions of the optical spectrum
with applications ranging from laser technology to self-referencing of frequency combs. However
accessing the nonlinear response of a medium typically requires high-power bulk sources
specific nonlinear crystals
and complex optical setups
hindering the path toward large-scale integration. Here we address all of these issues by engineering a chip-scale second-harmonic (SH) source based on the frequency doubling of a semiconductor laser self-injection-locked to a silicon nitride microresonator. The injection-locking mechanism
combined with a high-Q microresonator
results in an ultra-narrow intrinsic linewidth at the fundamental harmonic frequency as small as 41 Hz. Owing to the extreme resonant field enhancement
quasi-phase-matched second-order nonlinearity is photoinduced through the coherent photogalvanic effect and the high coherence is mapped on the generated SH field. We show how such optical poling technique can be engineered to provide efficient SH generation across the whole C and L telecom bands
in a reconfigurable fashion
overcoming the need for poling electrodes. Our device operates with milliwatt-level pumping and outputs SH power exceeding 2 mW
for an efficiency as high as 280%/W under electrical driving. Our findings suggest that standalone
highly-coherent
and efficient SH sources can be integrated in current silicon nitride photonics
unlocking the potential of
χ
(2)
processes in the next generation of integrated photonic devices.
Franken, P. A. et al. Generation of optical harmonics.Phys. Rev. Lett.7, 118–119 (1961)..
Svelto, O.Principles of Lasers. 5th edn. (Springer, New York, 2010).
Armstrong, J. A. Measurement of picosecond laser pulse widths.Appl. Phys. Lett.10, 16–18 (1967)..
Campagnola, P. Second harmonic generation imaging microscopy: applications to diseases diagnostics.Anal. Chem.83, 3224–3231 (2011)..
Shen, Y. R. Optical second harmonic generation at interfaces.Annu. Rev. Phys. Chem.40, 327–350 (1989)..
Reichert, J. et al. Measuring the frequency of light with mode-locked lasers.Opt. Commun.172, 59–68 (1999)..
Wang, C. et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides.Opt. Express25, 6963–6973 (2017)..
Wang, J. et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum.Optica7, 1126–1132 (2020)..
Lu, J. J. et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators.Optica7, 1654–1659 (2020)..
Bruch, A. W. et al. 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators.Appl. Phys. Lett.113, 131102 (2018)..
Kuo, P. S., Bravo-Abad, H.&Solomon, G. S. Second-harmonic generation using-quasi-phasematching in a GaAs whispering-gallery-mode microcavity.Nat. Commun.5, 3109 (2014)..
Lake, D. P. et al. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks.Appl. Phys. Lett.108, 031109 (2016)..
Blumenthal, D. J. et al. Silicon nitride in silicon photonics.Proc. IEEE106, 2209–2231 (2018)..
Bucio, T. D. et al. Silicon nitride photonics for the near-infrared.IEEE J. Sel. Top. Quantum Electron.26, 8200613 (2020)..
Xiang, C., Jin, W.&Bowers, J. E. Silicon nitride passive and active photonic integrated circuits: trends and prospects.Photonics Res.10, A82–A96 (2022)..
Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators.Science361, eaan8083 (2018)..
Gaeta, A. L., Lipson, M.&Kippenberg, T. J. Photonic-chip-based frequency combs.Nat. Photonics13, 158–169 (2019)..
Grassani, D. et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum.Nat. Commun.10, 1553 (2019)..
Kues, M. et al. Quantum optical microcombs.Nat. Photonics13, 170–179 (2019)..
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip.Nature591, 54–60 (2021)..
Billat, A. et al. Large second harmonic generation enhancement in Si3N4waveguides by all-optically induced quasi-phase-matching.Nat. Commun.8, 1016 (2017)..
Porcel, M. A. G. et al. Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides.Opt. Express25, 33143–33159 (2017)..
Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics.Nat. Photonics13, 494–499 (2019)..
Lu, X. Y. et al. Efficient photoinduced second-harmonic generation in silicon nitride photonics.Nat. Photonics15, 131–136 (2021)..
Nitiss, E. et al. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators.Nat. Photonics16, 134–141 (2022)..
Xiang, C. et al. High-performance lasers for fully integrated silicon nitride photonics.Nat. Commun.12, 6650 (2021)..
Dahmani, B., Hollberg, L.&Drullinger, R. Frequency stabilization of semiconductor lasers by resonant optical feedback.Opt. Lett.12, 876–878 (1987)..
Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator.Opt. Express25, 28167–28178 (2017)..
Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb.Nat. Commun.10, 680 (2019)..
Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon.Science373, 99–103 (2021)..
Lihachev, G. et al. Platicon microcomb generation using laser self-injection locking.Nat. Commun.13, 1771 (2022)..
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Qmicroresonators.Nat. Photonics15, 346–353 (2021)..
Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths.Nat. Photonics17, 157–164 (2023)..
Kondratiev, N. M. et al. Recent advances in laser self-injection locking to high-Qmicroresonators.Front. Phys.18, 21305 (2023)..
Shen, B. Q. et al. Integrated turnkey soliton microcombs.Nature582, 365–369 (2020)..
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock.Optica6, 680–685 (2019)..
Origlia, S. et al. Development of a strontium optical lattice clock for the SOC mission on the ISS. Proceedings of SPIE 9900, Quantum Optics; 29 April 2016; Brussels, Belgium. Brussels, Belgium: SPIE, 2016, 990003.
Mehta, K. K. et al. Integrated optical multi-ion quantum logic.Nature586, 533–537 (2020)..
Moody, G. et al. Roadmap on integrated quantum photonics.J. Phys. Photonics4, 012501 (2022)..
Liu, J. Q. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits.Nat. Commun.12, 2236 (2021)..
Dianov, E. W.&Starodubov, D. S. Photoinduced generation of the second harmonic in centrosymmetric media.Quantum Electron.25, 395–407 (1995)..
Yakar, O. et al. Generalized coherent photogalvanic effect in coherently seeded waveguides.Laser Photonics Rev.16, 2200294 (2022)..
Nitiss, E. et al. Formation rules and dynamics of Photoinducedχ(2)gratings in silicon nitride waveguides.ACS Photonics7, 147–153 (2020)..
Nitiss, E. et al. Tunable photo-induced second-harmonic generation in a mode-engineered silicon nitride microresonator.Opt. Express31, 14442–14453 (2023)..
Ling, J. W. et al. Self-injection locked frequency conversion laser.Laser Photonics Rev.17, 2200663 (2023)..
Llopis, O. et al. Phase noise measurement of a narrow linewidth CW laser using delay line approaches.Opt. Lett.36, 2713–2715 (2011)..
Tran, M. A., Huang, D. N.&Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/Ⅲ-Ⅴ heterogeneous integration.APL Photonics4, 111101 (2019)..
Clementi, M. et al. Self-injection locked second-harmonic generation in optically poled silicon nitride microresonators. CLEO: Science and Innovations 2023. San Jose, CA, USA: Optical Society of America, 2023, STh4O-1.
Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride.APL Photonics7, 046108 (2022)..
Hu, J. Q. et al. Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators.Sci. Adv.8, eadd8252 (2022)..
Brasch, V. et al. Self-referenced photonic chip soliton Kerr frequency comb.Light Sci. Appl.6, e16202 (2017)..
Li, B. H. et al. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator. Print athttps://arxiv.org/abs/2306.10660https://arxiv.org/abs/2306.10660(2023).
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构