fmalte.gather@uni-koeln.de
gmarcel.schubert@uni-koeln.de
收稿日期:2024-01-10,
修回日期:2024-04-30,
录用日期:2024-05-08,
网络出版日期:2024-06-05,
纸质出版日期:2024-12
Scan QR Code
Deformable microlaser force sensing[J]. LSA, 2024,13(6):1196-1209.
Eleni Dalaka, Joseph S. Hill, Jonathan H. H. Booth, et al. Deformable microlaser force sensing[J]. Light: science & applications, 2024, 13(6): 1196-1209.
Deformable microlaser force sensing[J]. LSA, 2024,13(6):1196-1209. DOI: 10.1038/s41377-024-01471-9.
Eleni Dalaka, Joseph S. Hill, Jonathan H. H. Booth, et al. Deformable microlaser force sensing[J]. Light: science & applications, 2024, 13(6): 1196-1209. DOI: 10.1038/s41377-024-01471-9.
Mechanical forces are key regulators of cellular behavior and function
affecting many fundamental biological processes such as cell migration
embryogenesis
immunological responses
and pathological states. Specialized force sensors and imaging techniques have been developed to quantify these otherwise invisible forces in single cells and in vivo. However
current techniques rely heavily on high-resolution microscopy and do not allow interrogation of optically dense tissue
reducing their application to 2D cell cultures and highly transparent biological tissue. Here
we introduce
DEFORM
deformable microlaser force sensing
a spectroscopic technique that detects sub-nanonewton forces with unprecedented spatio-temporal resolution. DEFORM is based on the spectral analysis of laser emission from dye-doped oil microdroplets and uses the force-induced lifting of laser mode degeneracy in these droplets to detect nanometer deformations. Following validation by atomic force microscopy and development of a model that links changes in laser spectrum to applied force
DEFORM is used to measure forces in 3D and at depths of hundreds of microns within tumor spheroids and late-stage
Drosophila
larva. We furthermore show continuous force sensing with single-cell spatial and millisecon
d temporal resolution
thus paving the way for non-invasive studies of biomechanical forces in advanced stages of embryogenesis
tissue remodeling
and tumor invasion.
Characterising forces deep inside biological tissue is a challenging task. Here
we demonstrate that deformable biointegrated microlasers can sense nanoscopic forces with unprecedented spatio-temporal resolution in vitro and in vivo.
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70101262&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70101262&type=small
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70101262&type=middle
P.H. Wu et al. , A comparison of methods to assess cell mechanical properties . Nat. Methods 15 , 491 - 498 ( 2018 ). http://doi.org/10.1038/s41592-018-0015-1 http://doi.org/10.1038/s41592-018-0015-1
M. Gómez-González et al. , Measuring mechanical stress in living tissues . Nat. Rev. Phys. 2 , 300 - 317 ( 2020 ). http://doi.org/10.1038/s42254-020-0184-6 http://doi.org/10.1038/s42254-020-0184-6
P. Roca-Cusachs , V. Conte , X. Trepat , Quantifying forces in cell biology . Nat. Cell Biol. 19 , 742 - 751 ( 2017 ). http://doi.org/10.1038/ncb3564 http://doi.org/10.1038/ncb3564
K. Doubrovinski et al. , Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids . Proc. Natl Acad. Sci. USA 114 , 1051 - 1056 ( 2017 ). http://doi.org/10.1073/pnas.1616659114 http://doi.org/10.1073/pnas.1616659114
F. Serwane et al. , In vivo quantification of spatially varying mechanical properties in developing tissues . Nat. Methods 14 , 181 - 186 ( 2017 ). http://doi.org/10.1038/nmeth.4101 http://doi.org/10.1038/nmeth.4101
A. Mongera et al. , A fluid-to-solid jamming transition underlies vertebrate body axis elongation . Nature 561 , 401 - 405 ( 2018 ). http://doi.org/10.1038/s41586-018-0479-2 http://doi.org/10.1038/s41586-018-0479-2
N. Träber et al. , Polyacrylamide bead sensors for in vivo quantification of cell-scale stress in zebrafish development . Sci. Rep. 9 ,( 2019 ). http://doi.org/10.1038/s41598-019-53425-6 http://doi.org/10.1038/s41598-019-53425-6
S.E. Zhang et al. , Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission . Nat. Biomed. Eng. 7 , 1473 - 1492 ( 2023 ). http://doi.org/10.1038/s41551-023-01080-8 http://doi.org/10.1038/s41551-023-01080-8
C.J. Bustamante et al. , Optical tweezers in single-molecule biophysics . Nat. Rev. Methods Prim. 1 , 25 ( 2021 ). http://doi.org/10.1038/s43586-021-00021-6 http://doi.org/10.1038/s43586-021-00021-6
T. Avsievich et al. , The advancement of blood cell research by optical tweezers . Rev. Phys. 5 ,( 2020 ). http://doi.org/10.1016/j.revip.2020.100043 http://doi.org/10.1016/j.revip.2020.100043
G. Volpe et al. , Roadmap for optical tweezers . J. Phys. Photonics 5 , 022501 ( 2023 ). http://doi.org/10.1088/2515-7647/acb57b http://doi.org/10.1088/2515-7647/acb57b
M.C. Zhong et al. , Trapping red blood cells in living animals using optical tweezers . Nat. Commun. 4 ,( 2013 ). http://doi.org/10.1038/ncomms2786 http://doi.org/10.1038/ncomms2786
I.A. Favre-Bulle et al. , Optical trapping in vivo: Theory, practice, and applications . Nanophotonics 8 , 1023 - 1040 ( 2019 ). http://doi.org/10.1515/nanoph-2019-0055 http://doi.org/10.1515/nanoph-2019-0055
G. Paci , Y.L. Mao , Forced into shape: Mechanical forces in Drosophila development and homeostasis . Semin. Cell Dev. Biol. 120 , 160 - 170 ( 2021 ). http://doi.org/10.1016/j.semcdb.2021.05.026 http://doi.org/10.1016/j.semcdb.2021.05.026
M.C.D. de la Loza , B.J. Thompson , Forces shaping the Drosophila wing . Mechanisms Dev. 144 , 23 - 32 ( 2017 ). http://doi.org/10.1016/j.mod.2016.10.003 http://doi.org/10.1016/j.mod.2016.10.003
M. Schubert et al. , Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking . Nano Lett. 15 , 5647 - 5652 ( 2015 ). http://doi.org/10.1021/acs.nanolett.5b02491 http://doi.org/10.1021/acs.nanolett.5b02491
M. Humar , S.H. Yun , Intracellular microlasers . Nat. Photonics 9 , 572 - 576 ( 2015 ). http://doi.org/10.1038/nphoton.2015.129 http://doi.org/10.1038/nphoton.2015.129
A.H. Fikouras et al. , Non-obstructive intracellular nanolasers . Nat. Commun. 9 ,( 2018 ). http://doi.org/10.1038/s41467-018-07248-0 http://doi.org/10.1038/s41467-018-07248-0
N. Martino et al. , Wavelength-encoded laser particles for massively multiplexed cell tagging . Nat. Photonics 13 , 720 - 727 ( 2019 ). http://doi.org/10.1038/s41566-019-0489-0 http://doi.org/10.1038/s41566-019-0489-0
Y.C. Chen , X.D. Fan , Biological lasers for biomedical applications . Adv. Optical Mater. 7 , 1900377 ( 2019 ). http://doi.org/10.1002/adom.201900377 http://doi.org/10.1002/adom.201900377
S. Caixeiro et al. , Local sensing of absolute refractive index during protein-binding using microlasers with spectral encoding . Adv. Optical Mater. 11 ,( 2023 ). http://doi.org/10.1002/adom.202300530 http://doi.org/10.1002/adom.202300530
C.Y. Gong et al. , Multifunctional laser imaging of cancer cell secretion with hybrid liquid crystal resonators . Laser Photonics Rev. 16 , 2100734 ( 2022 ). http://doi.org/10.1002/lpor.202100734 http://doi.org/10.1002/lpor.202100734
C.Y. Gong et al. , Topological encoded vector beams for monitoring amyloid-lipid interactions in microcavity . Adv. Sci. 8 ,( 2021 ). http://doi.org/10.1002/advs.202100096 http://doi.org/10.1002/advs.202100096
Y.H. Wei et al. , Starch-based biological microlasers . ACS Nano 11 , 597 - 602 ( 2017 ). http://doi.org/10.1021/acsnano.6b06772 http://doi.org/10.1021/acsnano.6b06772
M. Schubert et al. , Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers . Nat. Photonics 14 , 452 - 458 ( 2020 ). http://doi.org/10.1038/s41566-020-0631-z http://doi.org/10.1038/s41566-020-0631-z
D. McGloin , Droplet lasers: a review of current progress . Rep. Prog. Phys. 80 , 054402 ( 2017 ). http://doi.org/10.1088/1361-6633/aa6172 http://doi.org/10.1088/1361-6633/aa6172
A. Chiasera et al. , Spherical whispering-gallery-mode microresonators . Laser Photonics Rev. 4 , 457 - 482 ( 2010 ). http://doi.org/10.1002/lpor.200910016 http://doi.org/10.1002/lpor.200910016
D.S. Yu et al. , Whispering-gallery-mode sensors for biological and physical sensing . Nat. Rev. Methods Prim. 1 , 83 ( 2021 ). http://doi.org/10.1038/s43586-021-00079-2 http://doi.org/10.1038/s43586-021-00079-2
Y.A. Demchenko , M.L. Gorodetsky , Analytical estimates of eigenfrequencies, dispersion, and field distribution in whispering gallery resonators . J. Optical Soc. Am. B 30 , 3056 - 3063 ( 2013 ). http://doi.org/10.1364/JOSAB.30.003056 http://doi.org/10.1364/JOSAB.30.003056
M.L. Gorodetsky , A.E. Fomin , Geometrical theory of whispering-gallery modes . IEEE J. Sel. Top. Quantum Electron. 12 , 33 - 39 ( 2006 ). http://doi.org/10.1109/JSTQE.2005.862954 http://doi.org/10.1109/JSTQE.2005.862954
A. Rafferty et al. , Optical deformation of single aerosol particles . Proc. Natl Acad. Sci. USA 116 , 19880 - 19886 ( 2019 ). http://doi.org/10.1073/pnas.1907687116 http://doi.org/10.1073/pnas.1907687116
A.A. Lucio et al. , Spatiotemporal variation of endogenous cell-generated stresses within 3D multicellular spheroids . Sci. Rep. 7 ,( 2017 ). http://doi.org/10.1038/s41598-017-12363-x http://doi.org/10.1038/s41598-017-12363-x
S.C. Yorulmaz et al. , Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface . Opt. Commun. 282 , 3024 - 3027 ( 2009 ). http://doi.org/10.1016/j.optcom.2009.04.016 http://doi.org/10.1016/j.optcom.2009.04.016
P.C.F. Møller , L.B. Oddershede , Quantification of droplet deformation by electromagnetic trapping . Europhys. Lett. 88 , 48005 ( 2009 ). http://doi.org/10.1209/0295-5075/88/48005 http://doi.org/10.1209/0295-5075/88/48005
L.M. Lee , A.P. Liu , The application of micropipette aspiration in molecular mechanics of single cells . J. Nanotechnol. Eng. Med. 5 , 040902 ( 2014 ). http://doi.org/10.1115/1.4029936 http://doi.org/10.1115/1.4029936
A. Mongera et al. , Mechanics of the cellular microenvironment as probed by cells in vivo during zebrafish presomitic mesoderm differentiation . Nat. Mater. 22 , 135 - 143 ( 2023 ). http://doi.org/10.1038/s41563-022-01433-9 http://doi.org/10.1038/s41563-022-01433-9
B. Guirao , Y. Bellaïche , Biomechanics of cell rearrangements in Drosophila . Curr. Opin. Cell Biol. 48 , 113 - 124 ( 2017 ). http://doi.org/10.1016/j.ceb.2017.06.004 http://doi.org/10.1016/j.ceb.2017.06.004
C.P. Heisenberg , Y. Bellaïche , Forces in tissue morphogenesis and patterning . Cell 153 , 948 - 962 ( 2013 ). http://doi.org/10.1016/j.cell.2013.05.008 http://doi.org/10.1016/j.cell.2013.05.008
K. McDole et al. , In toto imaging and reconstruction of post-implantation mouse development at the single-cell level . Cell 175 , 859 - 876.e33 ( 2018 ). http://doi.org/10.1016/j.cell.2018.09.031 http://doi.org/10.1016/j.cell.2018.09.031
C.F. Guimarães et al. , The stiffness of living tissues and its implications for tissue engineering . Nat. Rev. Mater. 5 , 351 - 370 ( 2020 ). http://doi.org/10.1038/s41578-019-0169-1 http://doi.org/10.1038/s41578-019-0169-1
C. Mark et al. , Collective forces of tumor spheroids in three-dimensional biopolymer networks . eLife 9 ,( 2020 ). http://doi.org/10.7554/eLife.51912 http://doi.org/10.7554/eLife.51912
V.M. Titze et al. , Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers . Nat. Protoc. 19 , 928 - 959 ( 2024 ). http://doi.org/10.1038/s41596-023-00924-6 http://doi.org/10.1038/s41596-023-00924-6
R. Priya et al. , Tension heterogeneity directs form and fate to pattern the myocardial wall . Nature 588 , 130 - 134 ( 2020 ). http://doi.org/10.1038/s41586-020-2946-9 http://doi.org/10.1038/s41586-020-2946-9
A.J. Stevenson et al. , Multiscale imaging of basal cell dynamics in the functionally mature mammary gland . Proc. Natl Acad. Sci. USA 117 , 26822 - 26832 ( 2020 ). http://doi.org/10.1073/pnas.2016905117 http://doi.org/10.1073/pnas.2016905117
R. Chang , M. Prakash , Topological damping in an ultrafast giant cell . Proc. Natl Acad. Sci. USA 120 , e2303940120 ( 2023 ). http://doi.org/10.1073/pnas.2303940120 http://doi.org/10.1073/pnas.2303940120
X.X. Chen et al. , Optical manipulation of soft matter . Small Methods 8 ,( 2024 ). http://doi.org/10.1002/smtd.202301105 http://doi.org/10.1002/smtd.202301105
E. Coen , D.J. Cosgrove , The mechanics of plant morphogenesis . Science 379 , eade8055 ( 2023 ). http://doi.org/10.1126/science.ade8055 http://doi.org/10.1126/science.ade8055
W.A.C. Bauer et al. , Microfluidic production of monodisperse functional o/w droplets and study of their reversible pH dependent aggregation behavior . Soft Matter 7 , 4214 - 4220 ( 2011 ). http://doi.org/10.1039/c1sm05087g http://doi.org/10.1039/c1sm05087g
Q.N. Zhang et al. , Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging . Sci. Rep. 7 ,( 2017 ). http://doi.org/10.1038/s41598-017-02797-8 http://doi.org/10.1038/s41598-017-02797-8
A.N. Oraevsky , Whispering-gallery waves . Quantum Electron. 32 , 377 - 400 ( 2002 ). http://doi.org/10.1070/QE2002v032n05ABEH002205 http://doi.org/10.1070/QE2002v032n05ABEH002205
0
浏览量
4
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构