1.Division of Science Education, Kangwon National University, Chuncheon 24341, South Korea
2.Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
3.Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
Homan Kang (hkang7@mgh.harvard.edu)
Bong-Hyun Jun (bjun@konkuk.ac.kr)
收稿日期:2024-07-23,
修回日期:2024-11-29,
录用日期:2024-12-15,
网络出版日期:2025-02-11,
纸质出版日期:2025-03-31
Scan QR Code
In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications[J]. LSA, 2025,14(3):610-633.
Chang, H. J. et al. In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications. Light: Science & Applications, 14, 610-633 (2025).
In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications[J]. LSA, 2025,14(3):610-633. DOI: 10.1038/s41377-024-01718-5.
Chang, H. J. et al. In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications. Light: Science & Applications, 14, 610-633 (2025). DOI: 10.1038/s41377-024-01718-5.
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool in various biomedical applications
including in vivo imaging
diagnostics
and therapy
largely due to the development of near-infrared (NIR) active SERS substrates. This review provides a comprehensive overview of SERS-based applications in vivo
focusing on key aspects such as the design considerations for SERS nanoprobes and advancements in instrumentation. Topics covered include the development of NIR SERS substrates
Raman label compounds (RLCs)
protective coatings
and the conjugation of bioligands for targeted imaging and therapy. The review also discusses microscope-based configurations such as scanning
widefield imaging
and fiber-optic setups. Recent advances in using SERS nanoprobes for in vivo sensing
diagnostics
biomolecule screening
multiplex imaging
intraoperative guidance
and multifunctional cancer therapy are highlighted. The review concludes by addressing challenges in the clinical translation of SERS nanoprobes and outlines future directions
emphasizing opportunities for advancing biomedical research and clinical applications.
Huang, J. A. et al. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 10 , 5321, https://doi.org/10.1038/s41467-019-13242-x (2019)..
Li, D. et al. Label-free detection of miRNA using surface-enhanced Raman spectroscopy. Anal. Chem. 92 , 12769–12773, https://doi.org/10.1021/acs.analchem.0c03335 (2020)..
Xu, L. J. et al. Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal. Chem. 86 , 2238–2245, https://doi.org/10.1021/ac403974n (2014)..
Shafer-Peltier, K. E. et al. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 125 , 588–593, https://doi.org/10.1021/ja028255v (2003)..
Vanga la, K. et al. Sensitive carbohydrate detection using surface enhanced Raman tagging. Anal. Chem. 82 , 10164–10171, https://doi.org/10.1021/ac102284x (2010)..
Kang,H. et al. Ultrasensitive NIR-SERRS probes with multiplexed ratiometric quantification for in vivo antibody leads validation. Adv. Healthc. Mater. 7 , 1700870, https://doi.org/10.1002/adhm.201700870 (2018)..
Kenry et al. Advances in surface enhanced raman spectroscopy for in vivo imaging in oncology. Nanotheranostics 6 , 31–49, https://doi.org/10.7150/ntno.62970 (2022)..
Stuart, D. A. et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78 , 7211–7215, https://doi.org/10.1021/ac061238u (2006)..
Qian, X. M. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26 , 83–90, https://doi.org/10.1038/nbt1377 (2008)..
Keren, S. et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl Acad. Sci. pnas. 0710575105 105 , 5844–5849, https://doi.org/10.1073/pnas.0710575105 (2008)..
Zavaleta, C. L. et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl Acad. Sci. USA 106 , 13511–13516, https://doi.org/10.1073/pnas.0813327106 (2009)..
Jokerst, J. V. et al. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6 , 10366–10377, https://doi.org/10.1021/nn304347g (2012)..
Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18 , 829–834, https://doi.org/10.1038/nm.2721 (2012)..
Bohndiek, S. E. et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc. Natl. Acad. Sci. USA 110 , 12408–12413, https://doi.org/10.1073/pnas.1301379110 (2013)..
Kang, H. et al. Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv. Funct. Mater. 23 , 3719–3727, https://doi.org/10.1002/adfm.201203726 (2013)..
Chang, H. et al. Ag shell-Au satellite hetero-nanostructure for ultr a-sensitive, reproducible, and homogeneous NIR SERS activity. ACS Appl. Mater. Interfaces 6 , 11859–11863, https://doi.org/10.1021/am503675x (2014)..
Harmsen, S. et al. Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat. Commun. 6 , 6570, https://doi.org/10.1038/ncomms7570 (2015)..
Harmsen, S. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med. 7 , 271ra7, https://doi.org/10.1126/scitranslmed.3010633 (2015)..
Jeong, S. et al. Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics. Sci. Rep. 5 , 9455, https://doi.org/10.1038/srep09455 (2015)..
Cha, M. G. et al. A dual modal silver bumpy nanoprobe for photoacoustic imaging and SERS multiplexed identification of in vivo lymph nodes. Nanoscale 9 , 12556–12564, https://doi.org/10.1039/c7nr03742b (2017)..
Zhang, Y. Q. et al. Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nat. Commun. 10 , 3905, https://doi.org/10.1038/s41467-019-11829-y (2019)..
Bock, S. et al. Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps. J. Nanobiotechnology 20 , 130, https://doi.org/10.1186/s12951-022-01327-7 (2022)..
von Maltzahn, G. et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21 , 3175–3180, https://doi.org/10.1002/adma.200803464 (2009)..
Register, J. K. et al. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models. Anal. Bioanal. Chem. 407 , 8215–8224, https://doi.org/10.1007/s00216-015-8939-0 (2015)..
Tian, F. R. et al. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 106 , 87–97, https://doi.org/10.1016/j.biomaterials.2016.08.014 (2016)..
Hong, G. S., Antaris, A. L. & Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1 , 0010, https://doi.org/10.1038/s41551-016-0010 (2017)..
Park, J. E. et al. Golden opportunities: plasmon ic gold nanostructures for biomedical applications based on the second near-infrared window. Small Methods 1 , 1600032, https://doi.org/10.1002/smtd.201600032 (2017)..
Lane, L. A., Xue, R. Y. & Nie, S. M. Emergence of two near-infrared windows for in vivo and intraoperative SERS. Curr. Opin. Chem. Biol. 45 , 95–103, https://doi.org/10.1016/j.cbpa.2018.03.015 (2018)..
Smith, A. M., Mancini, M. C. & Nie, S. M. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4 , 710–711, https://doi.org/10.1038/nnano.2009.326 (2009)..
Li, Q. Q. et al. Design and synthesis of SERS materials for in vivo molecular imaging and biosensing. Adv. Sci. 10 , 2202051, https://doi.org/10.1002/advs.202202051 (2023)..
Du, Z. et al. Recent advances in applications of nanoparticles in SERS in vivo imaging. WIREs Nanomed. Nanobiotechnology 13 , e1672, https://doi.org/10.1002/wnan.1672 (2021)..
Zong, C. et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118 , 4946–4980, https://doi.org/10.1021/acs.chemrev.7b00668 (2018)..
Jun, B. H. et al. Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays. Nanomedicine 6 , 1463–1480, https://doi.org/10.2217/nnm.11.123 (2011)..
Pavel, I. et al. Label-free SERS detection of small proteins modified to act as bifunctional linkers. J. Phys. Chem. C 112 , 4880–4883, https://doi.org/10.1021/jp710261y (2008)..
Li, X. Z. et al. Polymerase chain reaction—surface-enhanced Raman spectroscopy (PCR-SERS) method for gene methylation level detection in plasma. Theranostics 10 , 898–909, https://doi.org/10.7150/thno.30204 (2020)..
Xu, L. J. et al. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. J. Am. Chem. Soc. 137 , 5149–5154, https://doi.org/10.1021/jacs.5b01426 (2015)..
Rahman, A. et al. Lectin-modified bacterial cellulose nanocrystals decorated with Au nanoparticles for selective detection of bacteria using surface-enhanced Raman scattering coupled with machine learning. ACS Appl. Nano Mater. 5 , 259–268, https://doi.org/10.1021/acsanm.1c02760 (2022)..
Safir, F. et al. Combining acoustic bioprinting with AI-assisted Raman spectroscopy for high-throughput identification of bacteria in blood. Nano Lett. 23 , 2065–2073, https://doi.org/10.1021/acs.nanolett.2c03015 (2023)..
Wang, Y. Q., Yan, B. & Chen, L. X. SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113 , 1391–1428, https://doi.org/10.1021/cr300120g (2013)..
Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14 , 28–117, https://doi.org/10.1021/acsnano.9b04224 (2020)..
Chen, G. et al. Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J. Am. Chem. Soc. 132 , 3644–3645, https://doi.org/10.1021/ja9090885 (2010)..
Xie, J. P. et al. The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2 , 2473–2480, https://doi.org/10.1021/nn800442q (2008)..
Wang, P. Y. et al. Au/Ag nanobox-based near-infrared surface-enhanced Raman scattering for hydrogen sulfide sensing. ACS Appl. Bio Mater. 2 , 417–423, https://doi.org/10.1021/acsabm.8b00634 (2019)..
Mei, R. C. et al. Gold na norod array-bridged internal-standard SERS tags: from ultrasensitivity to multifunctionality. ACS Appl. Mater. Interfaces 12 , 2059–2066, https://doi.org/10.1021/acsami.9b18292 (2020)..
Wang, J. et al. Bioorthogonal SERS nanotags as a precision theranostic platform for in vivo SERS imaging and cancer photothermal therapy. Bioconjug. Chem. 31 , 182–193, https://doi.org/10.1021/acs.bioconjchem.0c00022 (2020)..
Olson, T. Y. et al. Hollow gold−silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering. J. Phys. Chem. C. 112 , 6319–6329, https://doi.org/10.1021/jp7116714 (2008)..
Gellner, M., Küstner, B. & Schlücker, S. Optical properties and SERS efficiency of tunable gold/silver nanoshells. Vib. Spectrosc. 50 , 43–47, https://doi.org/10.1016/j.vibspec.2008.07.011 (2009)..
Kang, H. et al. One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J. Mater. Chem. B 2 , 4415–4421 (2014)..
Phonthammachai, N. et al. Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes. Langmuir 24 , 5109–5112, https://doi.org/10.1021/la703580r (2008)..
Brinson, B. E. et al. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24 , 14166–14171, https://doi.org/10.1021/la802049p (2008)..
Hao, F. et al. Plasmon resonances of a gold nanostar. Nano Lett. 7 , 729–732, https://doi.org/10.1021/nl062969c (2007)..
Nayak, T. R. et al. Tissue factor-specific ultra-bright SERRS nanostars for Raman detection of pulmonary micrometastases. Nanoscale 9 , 1110–1119, https://doi.org/10.1039/c6nr08217c (2017)..
Lim, D. K. et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6 , 452–460, https://doi.org/10.1038/nnano.2011.79 (2011)..
Gellner, M. et al. 3D self-assembled plasmonic superstructures of goldnanospheres: synthesis and characterization at the single-particle level. Small 7 , 3445–3451, https://doi.org/10.1002/smll.201102009 (2011)..
Kang, H. et al. Template-assisted plasmonic nanogap shells for highly enhanced detection of cancer biomarkers. Int. J. Mol. Sci. 22 , 1752, https://doi.org/10.3390/ijms22041752 (2021)..
Zhang, Y. Q. et al. Ultraphotostable mesoporous silica-coated gap-enhanced Raman tags (GERTs) for high-speed bioimaging. ACS Appl. Mater. Interfaces 9 , 3995–4005, https://doi.org/10.1021/acsami.6b15170 (2017)..
Lee, J. H. et al. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS Nano 6 , 9574–9584, https://doi.org/10.1021/nn3028216 (2012)..
Polli, D. et al. Broadband coherent raman scattering microscopy. Laser Photonics Rev. 12 , 1800020, https://doi.org/10.1002/lpor.201800020 (2018)..
Samanta, A. et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. 50 , 6089–6092, https://doi.org/10.1002/anie.201007841 (2011)..
Maiti, K. K. et al. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7 , 85–93, https://doi.org/10.1016/j.nantod.2012.02.008 (2012)..
Kearns, H. et al. Sensitive SERS nanotags for use with a hand-held 1064 nm Raman spectrometer. R. Soc. Open Sci. 4 , 170422, https://doi.org/10.1098/rsos.170422 (2017)..
Liang, D. W. et al. SERS nanoprobes in biologically Raman silent region for tumor cell imaging and in vivo tumor spectral detection in mice. Adv. Biosyst. 2 , 1800100, https://doi.org/10.1002/adbi.201800100 (2018)..
Rodal-Cedeira, S. et al. An expanded surface-enhanced Raman scattering tags library by combinatorial encapsulation of reporter molecules in metal nanoshells. ACS Nano 14 , 14655–14664, https://doi.org/10.1021/acsnano.0c04368 (2020)..
Eremina, O. E. et al. Expanding the multiplexing capabilities of Raman imaging to reveal highly specific molecular expression and enable spatial profiling. ACS Nano 16 , 10341–10353, https://doi.org/10.1021/acsnano.2c00353 (2022)..
Samanta, A. et al. Multiplexing SERS nanotags for the imaging of differentiated mouse embryonic stem cells (mESC) and detection of teratoma in vivo. Am. J. Nucl. Med. Mol. Imaging 4 , 114–124 (2014)..
Kennedy, D. C. et al. Development of nanoparticle probes for multiplex SERS imaging of cell surface proteins. Nanoscale 2 , 1413–1416, https://doi.org/10.1039/c0nr00122h (2010 )..
Kennedy, D. C. et al. Carbon-bonded silver nanoparticles: alkyne-functionalized ligands for SERS imaging of mammalian cells. Chem. Commun. 47 , 3156–3158, https://doi.org/10.1039/c0cc05331g (2011)..
Song, Z. L. et al. Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging. J. Am. Chem. Soc. 136 , 13558–13561, https://doi.org/10.1021/ja507368z (2014)..
Wu, J. Z. et al. Bioorthogonal SERS nanoprobes for mulitplex spectroscopic detection, tumor cell targeting, and tissue imaging. Chem. A Eur. J. 21 , 12914–12918, https://doi.org/10.1002/chem.201501942 (2015)..
Liu, Z. M. et al. Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 7 , 6754–6761, https://doi.org/10.1039/c5nr01055a (2015)..
Chung, T. H. et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28 , 2959–2966, https://doi.org/10.1016/j.biomaterials.2007.03.006 (2007)..
Maiti, K. K. et al. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens. Bioelectron. 26 , 398–403, https://doi.org/10.1016/j.bios.2010.07.123 (2010)..
Iacono, P., Karabeber, H. & Kircher, M. F. A “schizophotonic” all-in-one nanoparticle coating for multiplexed SE(R)RS biomedical imaging. Angew. Chem. Int. Ed. 53 , 11756–11761, https://doi.org/10.1002/anie.201403835 (2014)..
Yu, Q. et al. Polystyrene encapsulated SERS tags as promising standard tools: simple and universal in synthesis, highly sensitive and ultrastable for bioimaging. Anal. Chem. 91 , 5270–5277, https://doi.org/10.1021/acs.analchem.9b00038 (2019)..
Zhao, X. Z. et al. Polystyrene nanoplastics demonstrate high structural stability in vivo: a comparative study with silica nanoparticles via SERS tag labeling. Chemosphere 300 , 134567, https://doi.org/10.1016/j.chemosphere.2022.134567 (2022)..
Fales, A. M., Yuan, H. & Vo-Dinh, T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 27 , 12186–12190, https://doi.org/10.1021/la202602q (2011)..
Oseledchyk, A. et al. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano 11 , 1488–1497, https://doi.org/10.1021/acsnano.6b06796 (2017)..
Niu, X. J. et al. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Appl. Mater. Interfaces 6 , 5152–5160, https://doi.org/10.1021/am500411m (2014)..
Ip, S. et al. Phospholipid membrane encapsulation of nanoparticles for surface-enhanced Raman scattering. Langmuir 27 , 7024–7033, https://doi.org/10.1021/la200212c (2011)..
Ip, S. et al. Dual-mode dark field and surface-enhanced Raman scattering liposomes for lymphoma and leukemia cell imaging. Langmuir 35 , 1534–1543, https://doi.org/10.1021/acs.langmuir.8b02313 (2019)..
Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2 , 214–221, https://doi.org/10.1038/nrd1033 (2003)..
Suk, J. S. et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99 , 28–51, https://doi.org/10.1016/j.addr.2015.09.01 2 (2016)..
Jokerst, J. V. et al. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6 , 715–728, https://doi.org/10.2217/nnm.11.19 (2011)..
Mulvaney, S. P. et al. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19 , 4784–4790, https://doi.org/10.1021/la026706j (2003)..
Lu, J. et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6 , 1794–1805, https://doi.org/10.1002/smll.201000538 (2010)..
Schütz, M. et al. Synthesis of glass-coated SERS nanoparticle probes via SAMs with terminal SiO 2 precursors. Small 6 , 733–737, https://doi.org/10.1002/smll.200902065 (2010)..
Yin, Y. C. et al. Silica-coated, waxberry-like surface-enhanced Raman resonant scattering tag-pair with near-infrared Raman dye encoding: toward in vivo duplexing detection. Anal. Chem. 92 , 14814–14821, https://doi.org/10.1021/acs.analchem.0c03674 (2020)..
Loo, C. et al. Gold nanoshell bi oconjugates for molecular imaging in living cells. Opt. Lett. 30 , 1012–1014, https://doi.org/10.1364/ol.30.001012 (2005)..
Dinish, U. S. et al. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4 , 4075, https://doi.org/10.1038/srep04075 (2014)..
Yu, J. H. et al. Noninvasive and highly multiplexed five-color tumor imaging of multicore near-infrared resonant surface-enhanced Raman nanoparticles in vivo. ACS Nano 15 , 19956–19969, https://doi.org/10.1021/acsnano.1c07470 (2021)..
Jeong, S. et al. Highly robust and optimized conjugation of antibodies to nanoparticles using quantitatively validated protocols. Nanoscale 9 , 2548–2555, https://doi.org/10.1039/c6nr04683e (2017)..
Parrish, B., Breitenkamp, R. B. & Emrick, T. PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127 , 7404–7410, https://doi.org/10.1021/ja050310n (2005)..
Liu, R. Y. et al. Click-functionalized SERS nanoprobes with improved labeling efficiency and capability for cancer cell imaging. ACS Appl. Mater. Interfaces 9 , 38222–38229, https://doi.org/10.1021/acsami.7b10409 (2017)..
Wang, Y. et al. Surgical guidance via multiplexed molecular imaging of fresh tissues labeled with SERS-coded nanoparticles. IEEE J. Sel. Top. Quantum Electron. 22 , 6802911, https://doi.org/10.1109/JSTQE.2015.2507358 (2016)..
Lin, K. et al. Real-time in vivo diagnosis of nasopharyngeal carcinoma using rapid fiber-optic Raman spectroscopy. Theranostics 7 , 3517–3526, https://doi.org/10.7150/thno.16359 (2017)..
Smith, M. H., Fork, R. L. & Cole, S. T. Safe delivery of optical power from space. Opt. Express 8 , 537–546, https://doi.org/10.1364/OE.8.000537 (2001)..
Wang, Y. et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci. Rep. 6 , 21242, https://doi.org/10.1038/srep21242 (2016)..
Wang, Y. W. et al. Multiplexed molecular imaging of fresh tissue surfaces enabled by convection-enhanced topical staining with SERS-coded nanoparticles. Small 12 , 5612–5621, https://doi.org/10.1002/smll.201601829 (2016)..
Mallia, R. J. et al. Filter-based method for backg round removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo. J. Biomed. Opt. 17 , 076017, https://doi.org/10.1117/1.Jbo.17.7.076017 (2012)..
McVeigh, P. Z. et al. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo. J. Biomed. Opt. 18 , 046011, https://doi.org/10.1117/1.Jbo.18.4.046011 (2013)..
Mohs, A. M. et al. Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal. Chem. 82 , 9058–9065, https://doi.org/10.1021/ac102058k (2010)..
Karabeber, H. et al. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 8 , 9755–9766, https://doi.org/10.1021/nn503948b (2014)..
Wang, Y. W. et al. Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus. Biomed. Opt. Express 5 , 2883–2895, https://doi.org/10.1364/BOE.5.002883 (2014)..
Kim, Y. I. et al. Simultaneous detection of EGFR and VEGF in colorectal cancer using fluorescence-Raman endoscopy. Sci. Rep. 7 , 1035, https://doi.org/10.1038/s41 598-017-01020-y (2017)..
Jermyn, M. et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med. 7 , 274ra19, https://doi.org/10.1126/scitranslmed.aaa2384 (2015)..
Zavaleta, C. L. et al. Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small 7 , 2232–2240, https://doi.org/10.1002/smll.201002317 (2011)..
Zavaleta, C. L. et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl. Acad. Sci. USA 110 , E2288–E2297, https://doi.org/10.1073/pnas.1211309110 (2013)..
Garai, E. et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS ONE 10 , e0123185, https://doi.org/10.1371/journal.pone.0123185 (2015)..
Wang, Y. W. et al. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed. Opt. Express 6 , 3714–3723, https://doi.org/10.1364/boe.6.003714 (2015)..
Pal, S. et al. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nat. Commun. 10 , 1926, https://doi.org/10.1038/s41467-019-09173-2 (2019)..
Yuen, J. M. et al. Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal. Chem. 82 , 8382–8385, https://doi.org/10.1021/ac101951j (2010)..
Sharma, B. et al. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J. Am. Chem. Soc. 135 , 17290–17293, https://doi.org/10.1021/ja409378f (2013)..
Nicolson, F. et al. Non-invasive in vivo imaging of cancer using surface-enhanced spatially offset Raman spectroscopy (SESORS). Theranostics 9 , 5899–5913, https://doi.org/10.7150/thno.36321 (2019)..
Stone, N. et al. Surface enhanced spatiallyoffset Raman spectroscopic (SESORS) imaging—the next dimension. Chem. Sci. 2 , 776–780, https://doi.org/10.1039/c0sc00570c (2011)..
Xie, H. N. et al. Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy. Angew. Chem. Int. Ed. 51 , 8509–8511, https://doi.org/10.1002/anie.201203728 (20 12)..
Nicolson, F. et al. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS). Chem. Sci. 9 , 3788–3792, https://doi.org/10.1039/c8sc00994e https://doi.org/10.1039/c8sc00994e (2018)..
Nicolson, F. et al. Spatially offset Raman spectroscopy for biomedical applications. Chem. Soc. Rev. 50 , 556–568, https://doi.org/10.1039/d0cs00855a (2021)..
Yang, W. et al. Real-time molecular imaging of near-surface tissue using Raman spectroscopy. Light Sci. Appl. 11 , 90, https://doi.org/10.1038/s41377-022-00773-0 (2022)..
Sun, X. C. Glucose detection through surface-enhanced Raman spectroscopy: a review. Anal. Chim. Acta 1206 , 339226, https://doi.org/10.1016/j.aca.2021.339226 (2022)..
Laing, S. et al. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 1 , 0060, https://doi.org/10.1038/s41570-017-0060 (2017)..
Ma, K. et al. In vivo, transcutaneous glucose sensing using su rface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83 , 9146–9152, https://doi.org/10.1021/ac202343e (2011)..
Yang, D. et al. Glucose sensing using surface-enhanced Raman-mode constraining. Anal. Chem. 90 , 14269–14278, https://doi.org/10.1021/acs.analchem.8b03420 (2018)..
Moody, A. S. et al. Surface-enhanced spatially-offset Raman spectroscopy (SESORS) for detection of neurochemicals through the skull at physiologically relevant concentrations. Analyst 145 , 1885–1893, https://doi.org/10.1039/c9an01708a (2020)..
Moody, A. S. et al. Surface enhanced spatially offset Raman spectroscopy detection of neurochemicals through the skull. Anal. Chem. 89 , 5688–5692, https://doi.org/10.1021/acs.analchem.7b00985 (2017)..
Odion, R. A. et al. Inverse surface‐enhanced spatially offset Raman spectroscopy (SESORS) through a monkey skull. J. Raman Spectrosc. 49 , 1452–1460, https://doi.org/10.1002/jrs.5402 (2018)..
Tian, S. et al. Exploring the frontiers of plant health: harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innov ative detection. Chin. Chem. Lett . https://doi.org/10.1016/j.cclet.2024.110336 https://doi.org/10.1016/j.cclet.2024.110336 (2024)..
Naqvi, S. M. Z. A. et al. Applied surface enhanced Raman spectroscopy in plant hormones detection, annexation of advanced technologies: a review. Talanta 236 , 122823, https://doi.org/10.1016/j.talanta.2021.122823 (2022)..
Son, W. K. et al. in vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants. Nat. Nanotechnol. 18 , 205–216, https://doi.org/10.1038/s41565-022-01274-2 (2023)..
Kim, J. H. et al. Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles. Chem. Commun. 47 , 2306–2308, https://doi.org/10.1039/c0cc04415f (2011)..
Jeong, S. et al. Two-dimensional SERS encoding method for on-bead peptide sequencing in high-throughput bioanalysis. Chem. Commun. 55 , 2700–2703, https://doi.org/10.1039/c8cc10224d (2019)..
Kang, H. et al. Graphical and SERS dual-modal identifier for encoding OBOC library. Sens. Actuators B Chem. 303 , 127211 (2020)..
Kang, H. et al. Direct identification of on-bead peptides using surface-enhanced Raman spectroscopic barcoding system for high-throughput bioanalysis. Sci. Rep. 5 , 10144, https://doi.org/10.1038/srep10144 (2015)..
Zhou, Y. S. et al. Multiplexed SERS barcodes for anti-counterfeiting. ACS Appl. Mater. Interfaces 12 , 28532–28538, https://doi.org/10.1021/acsami.0c06272 (2020)..
Gersten, J. & Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73 , 3023–3037, https://doi.org/10.1063/1.440560 (1980)..
Bedics, M. A. et al. Extreme red shifted SERS nanotags. Chem. Sci. 6 , 2302–2306, https://doi.org/10.1039/c4sc03917c (2015)..
Qiu, Y. Y. et al. Intraoperative detection and eradication of residual microtumors with gap-enhanced Raman tags. ACS Nano 12 , 7974–7985, https://doi.org/10.1021/acsnano.8b02681 (2018)..
Han, L. M. et al. Surface-enhanced resonance Raman scattering-guided brain tumor surgery showing prognostic benefit in rat models. ACS Appl. Mater. Interfaces 11 , 15241–15250, https://doi.org/10.1021/acsami.9b00227 (2019)..
Deng, B. G. et al. Raman nanotags-guided intraoperative sentinel lymph nodes precise location with minimal invasion. Adv. Sci. 9 , 2102405, https://doi.org/10.1002/advs.202102405 (2022)..
Woo, M. A. et al. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung. Anal. Chem. 81 , 1008–1015 (2009)..
Wang, Y. et al. Raman-encoded molecular imaging with topically applied SERS nanoparticles for intraoperative guidance of lumpectomy. Cancer Res. 77 , 4506–4516, https://doi.org/10.1158/0008-5472.CAN-17-0709 (2017)..
Bao, Z. Z. et al. Ratiometric Raman nanotags enable intraoperative detection of metastatic sentinel lymph node. Biomaterials 276 , 121070, https://doi.org/10.1016/j.biomaterials.2021.121070 (2021)..
Lv, Q. et al. Total aqueous synthesis of Au@Cu 2- x S core-shell nanoparticles for in vitro and in vivo SERS/PA imaging-guided photothermal cancer therapy. Adv. Healthc. Mater. 8 , 1801257, https://doi.org/10.1002/adhm.201801257 (2019)..
Sujai, P. T. et al. Biogeniccluster-encased gold nanorods as a targeted three-in-one theranostic nanoenvelope for SERS-guided photochemotherapy against metastatic melanoma. ACS Appl. Bio Mater. 2 , 588–600, https://doi.org/10.1021/acsabm.8b00746 (2019)..
Zhang, Y. Q. et al. Intraoperative Raman-guided chemo-photothermal synergistic therapy of advanced disseminated ovarian cancers. Small 14 , 1801022, https://doi.org/10.1002/smll.201801022 (2018)..
Wei, Q. L. et al. Intraoperative assessment and photothermal ablation of the tumor margins using gold nanoparticles. Adv. Sci. 8 , 2002788, https://doi.org/10.1002/advs.202002788 (2021)..
He, J. et al. SERS/NIR-Ⅱ optical nanoprobes for multidimensional tumor imaging from living subjects, pathology, and single cells and guided NIR-Ⅱ photothermal therapy. Adv. Funct. Mater. 32 , 2208028, https://doi.org/10.1002/adfm.202208028 (2022)..
Li, L. H. et al. Near-infrared Ⅱ plasmonic porous cubic nanoshells for in vivo noninvasive SERS visualization of sub-millimeter microtumors. Nat. Commun. 13 , 5249, https://doi.org/10.1038/s41467-022-32975-w (2022)..
Shan, B., Li, L., Zhao, Y., Wang, H. & Li, M. Near-Infrared Ⅱ plasmonic Au@Au–Ag dot-in-cubic nanoframes for in vivo surface-enhanced Raman spectroscopic detection and photoacoustic imaging. Adv. Funct. Mater. 31 , 2103186, https://doi.org/10.1002/adfm.202103186 (2021)..
Kang, H. et al. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale 7 , 18848–18862, https://doi.org/10.1039/c5nr05264e (2015)..
Jiang, X. Y., Du, B. J. & Zheng, J. Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat. Nanotechnol. 14 , 874–882, https://doi.org/10.1038/s41565-019-0499-6 (2019)..
Kang, H. et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater. 9 , 1901223, https://doi.org/10.1002/adhm.201901223 (2020)..
Joseph, V. et al. SERS enhancement of gold nanospheres of defined size. J. Raman Spectrosc. 42 , 1736–1742, https://doi.org/10.1002/jrs.2939 (2011)..
Bell, S. E. & McCourt, M. R. SERS enhancement by aggregated Au colloids: effect of particle size. Phys. Chem. Chem. Phys. 11 , 7455–7462, https://doi.org/10.1039/B 906049A (2009)..
Njoki, P. N. et al. Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C. 111 , 14664–14669, https://doi.org/10.1021/jp074902z (2007)..
Bose, T. et al. Overview of nano-drugs characteristics for clinical application: the journey from the entry to the exit point. J. Nanopart. Res. 16 , 2527, https://doi.org/10.1007/s11051-014-2527-7 (2014)..
Zhang, N. D., Xiong, G. Y. & Liu, Z. J. Toxicity of metal-based nanoparticles: challenges in the nano era. Front. Bioeng. Biotechnol. 10 , 1001572, https://doi.org/10.3389/fbioe.2022.1001572 (2022)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构