1.Beijing Academy of Quantum Information Sciences, Beijing 100193, China
2.National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
3.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4.State Key Laboratory of Optoelectronic Materials, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Bang Wu (wubang@baqis.ac.cn)
收稿:2025-01-17,
修回:2025-06-17,
录用:2025-06-20,
网络出版:2025-08-28,
纸质出版:2025-10-31
Scan QR Code
Xin-Rui Mao, Wei-Jie Ji, Shao-Lei Wang, 等. A single-photon source based on topological bulk cavity[J]. Light: Science & Applications, 2025,14(10):3131-3138.
Mao, X. R. et al. A single-photon source based on topological bulk cavity. Light: Science & Applications, 14, 3131-3138 (2025).
Xin-Rui Mao, Wei-Jie Ji, Shao-Lei Wang, 等. A single-photon source based on topological bulk cavity[J]. Light: Science & Applications, 2025,14(10):3131-3138. DOI: 10.1038/s41377-025-01929-4.
Mao, X. R. et al. A single-photon source based on topological bulk cavity. Light: Science & Applications, 14, 3131-3138 (2025). DOI: 10.1038/s41377-025-01929-4.
Topological photonics offers the potential to develop quantum light sources with inherent robustness against structural disorders. To date
topologically protected edge or corner states have been investigated for this purpose. Here
for the first time
we exploit a topological bulk state with vertical directionality to enhance the light emission from a single semiconductor quantum dot (QD). An irregular 'Q'-shaped cavity is applied for establishing topological robustness. We experimentally demonstrate a 1.6-fold Purcell enhancement of single-photon emission in the topological bulk cavity
with tolerance to the emission wavelength or the positioning of the coupled QD. Simulations indicate that such a QD-cavity coupling system can retain a Purcell factor exceeding 1.6 under a broad spectral detuning range of 8.6 nm or a coverage area of 2.5 μm
2
. Furthermore
the optimized cavity structure integrated with a reflector predicts a high single-photon extraction efficiency up to 92%. Our results offer a novel approach to develop topologically protected quantum light sources with high extraction efficiency and robust QD-cavity interaction against irregular cavity boundaries.
Brassard, G. et al. Limitations on practical quantum cryptography. Phys. Rev. Lett. 85 , 1330–1333 (2000)..
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8 , 285–291 (2012)..
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89 , 035002 (2017)..
DiVincenzo, D. P. Quantum computation. Science 270 , 255–261 (1995)..
Shields, A. J. Semiconductor quantum light sources. Nat. Photonics 1 , 215–223 (2007)..
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87 , 347–400 (2015)..
Hepp, S. et al. Semiconductor quantum dots for integrated quantum photonics. Adv. Quantum Technol. 2 , 1900020 (2019)..
Uppu, R. et al. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16 , 1308–1317 (2021)..
González-Tudela, A. et al. Light–matter interactions in quantum nanophotonic devices. Nat. Rev. Phys. 6 , 166–179 (2024)..
Buckley, S., Rivoire, K. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75 , 126503 (2012)..
Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12 , 1026–1039 (2017)..
Arakawa, Y. & Holmes, M. J. Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview. Appl. Phys. Rev. 7 , 021309 (2020)..
Solomon, G. S., Pelton, M. & Yamamoto, Y. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett. 86 , 3903–3906 (2001)..
Ding, X. et al. On-demand single photons with high extraction efficiency a nd near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116 , 020401 (2016)..
Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics 13 , 770–775 (2019)..
Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575 , 622–627 (2019)..
Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16 , 399–403 (2021)..
Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14 , 586–593 (2019)..
Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122 , 113602 (2019)..
Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95 , 013904 (2005)..
Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13 , 835–840 (2018)..
Lund-Hansen, T. et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101 , 113903 (2008)..
Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2 , 011014 (2012)..
Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113 , 093603 (2014)..
Daveau, R. S. et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica . 4 , 178–184 (2017)..
Sapienza, L. et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6 , 7833 (2015)..
Liu, S. F. et al. Super-resolvedsnapshot hyperspe ctral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies. Nat. Photonics 18 , 967–974 (2024)..
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8 , 821–829 (2014)..
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91 , 015006 (2019)..
Yan, Q. C. et al. Quantum topological photonics. Adv. Optical Mater. 9 , 2001739 (2021)..
Jurkat, J. et al. Single-photon source in a topological cavity. Nano Lett. 23 , 820–826 (2023)..
Barik, S. et al. A topological quantum optics interface. Science 359 , 666–668 (2018)..
Jiang, P. et al. Recent progress in chiral topological quantum interface. Front. Phys. 10 , 845579 (2022)..
Yamaguchi, T. et al. GaAs valley photonic crystal waveguide with light-emitting InAs quantum dots. Appl. Phys. Express 12 , 062005 (2019)..
Barik, S. et al. Chiral quantum optics using a topological resonator. Phys. Rev. B . 101 , 205303 (2020)..
Jalali Mehrabad, M. et al. Chiral topological photonics with an embedded quantum emitter. Optica 7 , 1690–1696 (2020)..
Xie, X. et al. Topological cavity based on slow-light topological edge mode for broadband Purcell enhancement. Phys. Rev. Appl. 16 , 014036 (2021)..
Kuruma, K. et al. Topologically‐protected single‐photon sources with topological slow light photonic crystal waveguides. Laser Photonics Rev. 16 , 2200077 (2022)..
Xie, X. et al. Cavity quantum electrodynamics with second‐order topological corner state. Laser Photonics Rev. 14 , 1900425 (2020)..
Rao, M. J. et al. Single photon emitter deterministically coupled to a topological corner state. Light Sci. Appl. 13 , 19 (2024)..
Shao, Z. K. et al. A high-performance topological bulk laser based on ban d-inversion-induced reflection. Nat. Nanotechnol. 15 , 67–72 (2020)..
Han, S. et al. Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum. Light Sci. Appl. 12 , 145 (2023)..
Li, Z. C. et al. Kekulé-modulated topological bulk cavity for intrinsic lateral beam shifting of high-purity linear-polarized light emission. Commun. Phys. 7 , 355 (2024)..
Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys. Rev. Appl. 9 , 064019 (2018)..
Chen, G. et al. Biexciton quantum coherence in a single quantum dot. Phys. Rev. Lett. 88 , 117901 (2002)..
Singh, H. et al. Optical transparency induced by a largely Purcell enhanced quantum dot in a polarization-degenerate cavity. Nano Lett. 22 , 7959–7964 (2022)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621