1.Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119077, Singapore
2.Department of Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
3.School of Information Science and Engineering, Shandong University, Jinan 250100, China
Xiao Gong (elegong@nus.edu.sg)
Published:31 October 2024,
Published Online:23 August 2024,
Received:04 March 2024,
Revised:16 July 2024,
Accepted:25 July 2024
Scan QR Code
Zhang, G. et al. Thin film ferroelectric photonic-electronic memory. Light: Science & Applications, 13, 2251-2262 (2024).
Zhang, G. et al. Thin film ferroelectric photonic-electronic memory. Light: Science & Applications, 13, 2251-2262 (2024). DOI: 10.1038/s41377-024-01555-6.
To reduce system complexity and bridge the interface between electronic and photonic circuits
there is a high demand for a non-volatile memory that can be accessed both electrically and optically. However
practical solutions are still lacking when considering the potential for large-scale complementary metal-oxide semiconductor compatible integration. Here
we present an experimental demonstration of a non-volatile photonic-electronic memory based on a 3-dimensional monolithic integrated ferroelectric-silicon ring resonator. We successfully demonstrate programming and erasing the memory using both electrical and optical methods
assisted by optical-to-electrical-to-optical conversion. The memory cell exhibits a high optical extinction ratio of 6.6 dB at a low working voltage of 5 V and an endurance of 4 × 10
4
cycles. Furthermore
the multi-level storage capability is analyzed in detail
revealing stable performance with a raw bit-error-rate smaller than 5.9 × 10
−2
. This ground-breaking work could be a key technology enabler for future hybrid electronic-photonic systems
targeting a wide range of applications such as photonic interconnect
high-speed data communication
and neuromorphic computing.
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics.Nature588, 39–47 (2020)..
Zangeneh-Nejad, F. et al. Analogue computing with metamaterials.Nat. Rev. Mater.6, 207–225 (2021)..
Marković, D. et al. Physics for neuromorphic computing.Nat. Rev. Phys.2, 499–510 (2020)..
Chen, Z. G.&Segev, M. Highlighting photonics: looking into the next decade.eLight1, 2 (2021)..
Alexoudi, T., Kanellos, G. T.&Pleros, N. Optical RAM and integrated optical memories: a survey.Light Sci. Appl.9, 91 (2020)..
Goi, E. et al. Perspective on photonic memristive neuromorphic computing.PhotoniX1, 3 (2020)..
Li, L. L. et al. Intelligent metasurfaces: control, communication and computing.eLight2, 7 (2022)..
Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.Nature556, 349–354 (2018)..
Sun, C. et al. Single-chip microprocessor that communicates directly using light.Nature528, 534–538 (2015)..
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing.Nat. Photonics15, 102–114 (2021)..
De Lima, T. F. et al. Machine learning with neuromorphic photonics.J. Lightwave Technol.37, 1515–1534 (2019)..
Tait, A. N. et al. Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics.J. Lightwave Technol.37,5996–6006 (2019)..
Huang, C. R. et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation.Nat. Electron.4, 837–844 (2021)..
Zhang, S. L. et al. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks.Nat. Commun.10, 3033 (2019)..
Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks.Nature589, 44–51 (2021)..
Zhang, H. et al. An optical neural chip for implementing complex-valued neural network.Nat. Commun.12, 457 (2021)..
Shao, R., Zhang, G.&Gong, X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components.Photonics Res.10, 1868–1876 (2022)..
O'Brien, J. L. Optical quantum computing.Science318, 1567–1570 (2007)..
Takeda, S.&Furusawa, A. Toward large-scale fault-tolerant universal photonic quantum computing.APL Photonics4, 060902 (2019)..
Youngblood, N. et al. Integrated optical memristors.Nat. Photonics17, 561–572 (2023)..
Fang, Z. R. et al. Non-volatile materials for programmable photonics.APL Mater.11, 100603 (2023)..
Wuttig, M., Bhaskaran, H.&Taubner, T. Phase-change materials for non-volatile photonic applications.Nat. Photonics11, 465–476 (2017)..
Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell.Optica6, 1–6 (2019)..
Zhou, W. et al. In-memory photonic dot-product engine with electrically programmable weight banks.Nat. Commun.14, 2887 (2023)..
Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality.Sci. Adv.5, eaaw2687 (2019)..
Delaney, M. et al. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3phase change material.Sci. Adv.7, eabg3500 (2021)..
Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory.Nat. Photonics9, 725–732 (2015)..
Zhang, Y. F. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics.Nat. Commun.10, 4279 (2019)..
Chen, X. Z. et al. Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials.Adv. Mater.35, 2203909 (2023)..
Meng, J. W. et al. Electrical programmable multilevel nonvolatile photonic random-access memory.Light Sci. Appl.12, 189 (2023)..
Ielmini, D. et al. Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation. 2007 IEEE International Electron Devices Meeting. Washington, DC, USA: IEEE, 2007, 939-942.
Zhang, W.&Ma, E. Unveiling the structural origin to control resistance drift in phase-change memory materials.Mater. Today41, 156–176 (2020)..
Pirovano, A. et al. Scaling analysis of phase-change memory technology. IEEE International Electron Devices Meeting 2003. Washington, DC, USA: IEEE, 2003, 29.6.1-29.6.4.
Cai, K. Vertical constrained coding for phase-change memory with thermal crosstalk. 2014 International Conference on Computing, Networking and Communications (ICNC). Honolulu, HI, USA: IEEE, 2014, 312-316.
Song, J. F. et al. Integrated photonics with programmable non-volatile memory.Sci. Rep.6, 22616 (2016)..
Grajower, M. et al. Non-volatile silicon photonics using nanoscale flash memory technology.Laser Photonics Rev.12, 1700190 (2018)..
Aritome, S. et al. Reliability issues of flash memory cells.Proc. IEEE81, 776–788 (1993)..
Lee, J. D. et al. Effects of interface trap generation and annihilation on the data retention characteristics of flash memory cells.IEEE Trans. Device Mater. Reliab.4, 110–117 (2004)..
Tossoun, B. et al. High-speed and energy-efficient non-volatile silicon photonic memory based on heterogeneously integrated memresonator.Nat. Commun.15, 551 (2024)..
Emboras, A. et al. Nanoscale plasmonic memristor with optical readout functionality.Nano Lett.13, 6151–6155 (2013)..
Fang, Z. R. et al. Fast and energy-efficient non-volatile Ⅲ-Ⅴ-on-silicon photonic phase shifter based on memristors.Adv. Optical Mater.11, 2301178 (2023)..
Abbas, H., Li, J. Y.&Ang, D. S. Conductive bridge random access memory (CBRAM): challenges and opportunities for memory and neuromorphic computing applications.Micromachines13, 725 (2022)..
Tan, A. J. et al. Experimental demonstration of a ferroelectric HfO2-based content addressable memory cell.IEEE Electron Device Lett.41, 240–243 (2020)..
Müller, J. et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. 2013 IEEE International Electron Devices Meeting. Washington, DC, USA: IEEE, 2013, 10.8.1-10.8.4.
Müller, J. et al. Ferroelectric Zr0.5Hf0.5O2thin films for nonvolatile memory applications.Appl. Phys. Lett.99, 112901 (2011)..
Zhou, Z. P. et al. A metal-insulator-semiconductor non-volatile programmable capacitor based on a HfAlOxferroelectric film.IEEE Electron Device Lett.41, 1837–1840 (2020)..
Kim, K.&Lee, S. Y. Memory technology in the future.Microelectron. Eng.84, 1976–1981 (2007)..
Udayakumar, K. et al. Manufacturable high-density 8 Mbit one transistor–one capacitor embedded ferroelectric random access memory.Jpn. J. Appl. Phys.47, 2710 (2008)..
Geler-Kremer, J. et al. A ferroelectric multilevel non-volatile photonic phase shifter.Nat. Photonics16, 491–497 (2022)..
Okuno, J. et al. SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2. 2020 IEEE Symposium on VLSI Technology. Honolulu, HI, USA: IEEE, 2020, 1-2..
Francois, T. et al. Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2scaled FeRAM co-integrated with 130nm CMOS for embedded NVM applications. 2019 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA: IEEE, 2019, 15.7.1-15.7.4..
Zheng, S. Y. et al. Proposal of ferroelectric based electrostatic doping for nanoscale devices.IEEE Electron Device Lett.42, 605–608 (2021)..
Bogaerts, W. et al. Silicon microring resonators.Laser Photonics Rev.6, 47–73 (2012)..
Zhou, Z. P. et al. Experimental demonstration of an inversion-type ferroelectric capacitive memory and its 1 kbit crossbar array featuring high CHCS/CLCS, fast speed, and long retention. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). Honolulu, HI, USA: IEEE, 2022, 357-358.
Freude, W. et al. Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER. 2012 14th International Conference on Transparent Optical Networks (ICTON). Coventry, UK: IEEE, 2012, 1-4.
Wu, J. X. et al. Monolithic integration of oxide semiconductor FET and ferroelectric capacitor enabled by Sn-doped InGaZnO for 3-D embedded RAM application.IEEE Trans. Electron Devices68, 6617–6622 (2021)..
Richardson, T. J., Shokrollahi, M. A.&Urbanke, R. L. Design of capacity-approaching irregular low-density parity-check codes.IEEE Trans. Inf. Theory47, 619–637 (2001)..
Djordjevic, I. B. et al. Using LDPC-coded modulation and coherent detection for ultra highspeed optical transmission.J. Lightwave Technol.25, 3619–3625 (2007)..
Zhou, J. R. et al. Demonstration of ferroelectricity in Al-doped HfO2with a low thermal budget of 500 ℃.IEEE Electron Device Lett.41, 1130–1133 (2020)..
Cao, R. R. et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode.IEEE Electron Device Lett.40, 1744–1747 (2019)..
Chernikova, A. G. et al. Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2thin films.ACS Appl. Mater. Interfaces10, 2701–2708 (2018)..
Li, E. W. et al. Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability.Photonics Res.7, 473–477 (2019)..
Li, X. D. et al. A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness.J. Appl. Phys.115, 103512 (2014)..
Campione, S. et al. Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide.IEEE Photonics J.9, 6601307 (2017)..
Wang, H. B. et al. High-speed and high-responsivity pin waveguide photodetector at a 2 μm wavelength with a Ge0.92Sn0.08/Ge multiple-quantum-well active layer.Opt. Lett.46, 2099–2102 (2021)..
Hettrich, H.&Möller, M. Linear low-power 13GHz SiGe-bipolar modulator driver with 7 Vpp differential output voltage swing and on-chip bias tee. 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM). Coronado, CA, USA: IEEE, 2014, 80-83.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution