1.Department of Precision Instrument, Tsinghua University, Beijing 100084, China
2.State Key Laboratory of Precision Space-Time Information Sensing Technology, Beijing 100084, China
3.Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
4.Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences & The Photonics Institute, Nanyang Technological University, Singapore 63737l, Singapore
5.School of Physics and Astronomy, University of Southampton, Southampton, UK
6.School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Qiang Liu (qiangliu@tsinghua.edu.cn)
Yijie Shen (yijie.shen@ntu.edu.sg)
Xing Fu (fuxing@tsinghua.edu.cn)
Published:31 December 2024,
Published Online:21 October 2024,
Received:25 April 2024,
Revised:03 August 2024,
Accepted:06 September 2024
Scan QR Code
Wang, Z. Y. et al. Structured light analogy of quantum squeezed states. Light: Science & Applications, 13, 3139-3150 (2024).
Wang, Z. Y. et al. Structured light analogy of quantum squeezed states. Light: Science & Applications, 13, 3139-3150 (2024). DOI: 10.1038/s41377-024-01631-x.
Quantum optics has advanced our understanding
of the nature of light and enabled applications far beyond what is possible with classical light. The unique capabilities of quantum light have inspired the migration of some conceptual ideas to the realm of classical optics
focusing on replicating and exploiting non-trivial quantum states of discrete-variable systems. Here
we further develop this paradigm by building the analogy of quantum squeezed states using classical structured light. We have found that the mechanism of squeezing
responsible for beating the standard quantum limit in quantum optics
allows for overcoming the “standard spatial limit” in classical optics: the light beam can be “squeezed” along one of the transverse directions in real space (at the expense of its enlargement along the orthogonal direction)
where its width becomes smaller than that of the corresponding fundamental Gaussian mode. We show that classical squeezing enables nearly sub-diffraction and superoscillatory light focusing
which is also accompanied by the nanoscale phase gradient of the size in the order of
λ
/100 (
λ
/1000)
demonstrated in the experiment (simulations). Crucially
the squeezing mechanism allows for continuous tuning of both features by varying the squeezing parameter
thus providing distinctive flexibility for optical microscopy and metrology beyond the diffraction limit and suggesting further exploration of classical analogies of quantum effects.
Forbes, A., de Oliveira, M.&Dennis, M. R. Structured light.Nat. Photonics15, 253–262 (2021)..
He, C., Shen, Y. J.&Forbes, A. Towards higher-dimensional structured light.Light Sci. Appl.11, 205 (2022)..
Wan, Z. S. et al. Ultra-degree-of-freedom structured light for ultracapacity information carriers.ACS Photonics10, 2149–2164 (2023)..
Li, C. et al. Arbitrarily structured quantum emission with a multifunctional metalens.eLight3, 19 (2023)..
Wang, S. et al. Flexible generation of structured terahertz fields via programmable exchange-biased spintronic emitters.eLight4, 11 (2024)..
Schott, G. A. Wave mechanics and classical mechanics and electrodynamics.Nature119, 820–822 (1927)..
Qian, X. F. et al. Shifting the quantum-classical boundary: theory and experiment for statistically classical optical fields.Optica2, 611–615 (2015)..
Nape, I. et al. Quantum structured light in high dimensions.APL Photonics8, 051101 (2023)..
Liu, S. L. et al. Classical analogy of a cat state using vortex light.Commun. Phys.2, 75 (2019)..
Schine, N. et al. Synthetic Landau levels for photons.Nature534, 671–675 (2016)..
Clark, L. W. et al. Observation of Laughlin states made of light.Nature582, 41–45 (2020)..
Corman, L. Light turned into exotic Laughlin matter.Nature582, 37–38 (2020)..
Situ, G. H.&Fleischer, J. W. Dynamics of the Berezinskii–Kosterlitz–Thouless transition in a photon fluid.Nat. Photonics14, 517–522 (2020)..
Shen, Y. J. et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser.Optica7, 820–831 (2020)..
Shen, Y. J. et al. Creation and control of high-dimensional multi-partite classically entangled light.Light Sci. Appl.10, 50 (2021)..
Guzman-Silva, D. et al. Demonstration of local teleportation using classical entanglement.Laser Photonics Rev.10, 317–321 (2016)..
Ndagano, B. et al. Characterizing quantum channels with non-separable states of classical light.Nat. Phys.13, 397–402 (2017)..
Zhu, Z. Y. et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams.Nat. Commun.12, 1666 (2021)..
Wan, Z. S. et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications.Light Sci. Appl.11, 144 (2022)..
Forbes, A., Aiello, A.&Ndagano, B. Classically entangled light.Prog. Opt.64, 99–153 (2019)..
Shen, Y. J.&Rosales-Guzmán, C. Nonseparable states of light: from quantum to classical.Laser Photonics Rev.16, 2100533 (2022)..
Couteau, C. et al. Applications of single photons to quantum communication and computing.Nat. Rev. Phys.5, 326–338 (2023)..
Couteau, C. et al. Applications of single photons in quantum metrology, biology and the foundations of quantum physics.Nat. Rev. Phys.5, 354–363 (2023)..
Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light.Nat. Photonics7, 613–619 (2013)..
Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy.Nature594, 201–206 (2021)..
Malia, B. K. et al. Distributed quantum sensing with mode-entangled spin-squeezed atomic states.Nature612, 661–665 (2022)..
Yu, H. C. et al. Quantum correlations between light and the kilogram-mass mirrors of LIGO.Nature583, 43–47 (2020)..
Kolobov, M. I. The spatial behavior of nonclassical light.Rev. Mod. Phys.71, 1539–1589 (1999)..
Zheludev, N. I.&Yuan, G. H. Optical superoscillation technologies beyond the diffraction limit.Nat. Rev. Phys.4, 16–32 (2022)..
Zheludev, N. I. What diffraction limit?Nat. Mater.7, 420–422 (2008)..
Chao, P. N. et al. Physical limits in electromagnetism.Nat. Rev. Phys.4, 543–559 (2022)..
Dragoman, D.&Dragoman, M. InQuantum-Classical Analogies(eds Dragoman, D.&Dragoman, M. ) 1–7 (Springer, 2004).
Gerry, C.&Knight, P.Introductory Quantum Optics(Cambridge University Press, 2004).
Nienhuis, G.&Allen, L. Paraxial wave optics and harmonic oscillators.Phys. Rev. A48, 656–665 (1993)..
Gbur, G. J.Mathematical Methods for Optical Physics and Engineering(Cambridge University Press, 2011).
Lvovsky, A. I. InPhotonics: Scientific Foundations, Technology and Applications(ed. Andrews, D. L. ) 121–163 (John Wiley&Sons, Inc, 2015).
Schleich, W. P. InQuantum Optics in Phase Space(ed. Schleich, W. P. ) 99–151 (Wiley-VCH Verlag Berlin GmbH, 2001).
Harder, G. et al. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum Optics.Phys. Rev. Lett.116, 143601 (2016)..
Chen, G., Wen, Z. Q.&Qiu, C. W. Superoscillation: from physics to optical applications.Light Sci. Appl.8, 56 (2019)..
Yuan, G. H.&Zheludev, N. I. Detecting nanometric displacements with optical ruler metrology.Science364, 771–775 (2019)..
Beck, M. Introductory quantum optics.Am. J. Phys.73, 1197–1198 (2005)..
Zhao, Y. J. et al. Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification.npj Quantum Inf.7, 24 (2021)..
Zhang, K. et al. Superoscillation focusing with suppressed sidebands by destructive interference.Opt. Express30, 43127–43142 (2022)..
Phillips, R. L.&Andrews, L. C. Spot size and divergence for Laguerre Gaussian beams of any order.Appl. Opt.22, 643–644 (1983)..
Inavalli, V. V. G. K. et al. A super-resolution platform for correlative live single-molecule imaging and STED microscopy.Nat. Methods16, 1263–1268 (2019)..
Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging.Nat. Mater.11, 432–435 (2012)..
Ouyang, W. Q. et al. Ultrafast 3D nanofabrication via digital holography.Nat. Commun.14, 1716 (2023)..
Lukosz, W. Optical systems with resolving powers exceeding the classical limit.J. Opt. Soc. Am.56, 1463–1471 (1966)..
Zivari, A. et al. Non-classical mechanical states guided in a phononic waveguide.Nat. Phys.18, 789–793 (2022)..
Arwas, G. et al. Anyonic-parity-time symmetry in complex-coupled lasers.Sci. Adv.8, eabm7454 (2022)..
McMahon, P. L. The physics of optical computing.Nat. Rev. Phys.5, 717–734 (2023)..
Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond.Light Sci. Appl.10, 235 (2021)..
Hiekkamäki, M.&Fickler, R. High-dimensional two-photon interference effects in spatial modes.Phys. Rev. Lett.126, 123601 (2021)..
Vetlugin, A. N. Coherent perfect absorption of quantum light.Phys. Rev. A104, 013716 (2021)..
Wang, X. L. et al. Quantum teleportation of multiple degrees of freedom of a single photon.Nature518, 516–519 (2015)..
Arrizón, V. et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields.J. Opt. Soc. Am. A24, 3500–3507 (2007)..
Scholes, S. et al. Structured light with digital micromirror devices: a guide to best practice.Opt. Eng.59, 041202 (2019)..
Novotny, L.&Hecht, B.Principles of Nano-Optics(Cambridge University Press, 2012).
Baykal, Y. Field correlations of a partially coherent optical Gaussian wave in tissue turbulence.J. Opt. Soc. Am. A39, C6–C11 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution