1.A*STAR Quantum Innovation Centre (Q.InC), Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
2.Department of Physics, National University of Singapore, Singapore 117542, Singapore
3.Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
4.Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
Di Zhu (dizhu@nus.edu.sg)
Published:30 November 2024,
Published Online:03 October 2024,
Received:30 May 2024,
Revised:12 September 2024,
Accepted:15 September 2024
Scan QR Code
Shi, X., Mohanraj, S.S., Dhyani, V. et al. Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides. Light: Science & Applications, 13, 2847-2856 (2024).
Shi, X., Mohanraj, S.S., Dhyani, V. et al. Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides. Light: Science & Applications, 13, 2847-2856 (2024). DOI: 10.1038/s41377-024-01645-5.
Integrated photon-pair sources are crucial for scalable photonic quantum systems. Thin-film lithium niobate is a promising platform for on-chip photon-pair generation through spontaneous parametric down-conversion (SPDC). However
the device implementation faces practical challenges. Periodically poled lithium niobate (PPLN)
despite enabling flexible quasi-phase matching
suffers from poor fabrication reliability and device repeatability
while conventional modal phase matching (MPM) methods yield limited efficiencies due to inadequate mode overlaps. Here
we introduce a layer-poled lithium niobate (LPLN) nanophotonic waveguide for efficient photon-pair generation. It leverages layer-wise polarity inversion through electrical poling to break spatial symmetry and significantly enhance nonlinear interactions for MPM
achieving a notable normalized second-harmonic generation (SHG) conversion efficiency of 4615% W
−1
cm
−2
. Through a cascaded SHG and SPDC process
we demonstrate photon-pair generation with a normalized brightness of 3.1 × 10
6
Hz nm
−1
mW
−2
in a 3.3 mm long LPLN waveguide
surpassing existing on-chip sources under similar operating configurations. Crucially
our LPLN waveguides offer enhanced fabrication reliability and reduced sensitivity to geometric variations and temperature fluctuations compared to PPLN devices. We expect LPLN to become a promising solution for on-chip nonlinear wavelength conversion and non-classical light generation
with immediate applications in quantum communication
networking
and on-chip photonic quantum information processing.
Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H.&Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network.Nature564, 225–228 (2018)..
Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability.Science381, 221–226 (2023)..
Xiang, G. -Y., Higgins, B. L., Berry, D., Wiseman, H. M.&Pryde, G. Entanglement-enhanced measurement of a completely unknown optical phase.Nat. Photonics5, 43–47 (2011)..
Kok, P. et al. Linear optical quantum computing with photonic qubits.Rev. Mod. Phys.79, 135 (2007)..
Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control.Nature546, 622–626 (2017)..
Couteau, C. et al. Applications of single photons to quantum communication and computing.Nat. Rev. Phys.5, 326–338 (2023)..
Flamini, F., Spagnolo, N.&Sciarrino, F. Photonic quantum information processing: a review.Rep. Prog. Phys.82, 016001 (2018)..
Wang, Y., Jöns, K. D.&Sun, Z. Integrated photon-pair sources with nonlinear optics.Appl. Phys. Rev.8, 011314 (2021)..
Moody, G., Chang, L., Steiner, T. J.&Bowers, J. E. Chip-scale nonlinear photonics for quantum light generation.AVS Quant. Sci.2, 041702 (2020)..
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics.Science360, 285–291 (2018)..
Wang, J., Sciarrino, F., Laing, A.&Thompson, M. G. Integrated photonic quantum technologies.Nat. Photonics14, 273–284 (2020)..
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies.Nat. Rev. Phys.4, 194–208 (2022)..
Jacobsen, R. S. et al. Strained silicon as a new electro-optic material.Nature441, 199–202 (2006)..
Zabelich, B., Nitiss, E., Stroganov, A.&Bres, C. -S. Linear electro-optic effect in silicon nitride waveguides enabled by electric-field poling.ACS Photonics9, 3374–3383 (2022)..
Shi, X. et al. Multichannel photon-pair generation with strong and uniform spectral correlation in a silicon microring resonator.Phys. Rev. Appl.12, 034053 (2019)..
Spring, J. B. et al. On-chip low loss heralded source of pure single photons.Opt. Express21, 13522–13532 (2013)..
Xiong, C. et al. Compact and reconfigurable silicon nitride time-bin entanglement circuit.Optica2, 724–727 (2015)..
Xiong, C. et al. Generation of correlated photon pairs in a chalcogenide as2s3 waveguide.Appl. Phys. Lett.98, 051101 (2011)..
Javid, U. A. et al. Ultrabroadband entangled photons on a nanophotonic chip.Phys. Rev. Lett.127, 183601 (2021)..
Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip.Light Sci. Appl.6, e16249–e16249 (2017)..
Li, J., Zhang, Q., Wang, J.&Poon, A. W. An integrated 3c-silicon carbide-on-insulator photonic platform for nonlinear and quantum light sources.Commun. Phys.7, 125 (2024)..
Horn, R. et al. Monolithic source of photon pairs.Phys. Rev. Lett.108, 153605 (2012)..
Autebert, C. et al. Integrated algaas source of highly indistinguishable and energy-time entangled photons.Optica3, 143–146 (2016)..
Zhu, D. et al. Integrated photonics on thin-film lithium niobate.Adv. Opt. Photonics13, 242–352 (2021)..
Saravi, S., Pertsch, T.&Setzpfandt, F. Lithium niobate on insulator: An emerging platform for integrated quantum photonics.Adv. Opt. Mater.9, 2100789 (2021)..
Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/w.Optica6, 1455–1460 (2019)..
Hwang, A. Y. et al. Mid-infrared spectroscopy with a broadly tunable thin-film lithium niobate optical parametric oscillator.Optica10, 1535–1542 (2023)..
Park, T. et al. Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator.Sci. Adv.10, eadl1814 (2024)..
Zhao, J. et al. Unveiling the origins of quasi-phase matching spectral imperfections in thin-film lithium niobate frequency doublers.APL Photon.8, 126106 (2023)..
Chen, P. -K. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides.Nat. Nanotechnol.19, 44–50 (2024)..
Xin, C. et al. Wavelength-accurate and wafer-scale process for nonlinear frequency mixers in thin-film lithium niobate. arXiv preprint arXiv: 2404.12381 (2024).
Wang, C. et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides.Opt. Express25, 6963–6973 (2017)..
Luo, R., He, Y., Liang, H., Li, M.&Lin, Q. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation.Laser Photon. Rev.13, 1800288 (2019)..
Zhang, X. et al. Antisymmetric-nonlinear lnoi waveguide for highly efficient second-harmonic generation. InAsia Communications and Photonics Conference, M4A–29 (Optica Publishing Group, 2020).
Gromovyi, M. et al. Intrinsic polarity inversion in iii-nitride waveguides for efficient nonlinear interactions.Opt. Express31, 31397–31409 (2023)..
Cai, L., Gorbach, A. V., Wang, Y., Hu, H.&Ding, W. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides.Sci. Rep.8, 12478 (2018)..
Wang, L., Zhang, X.&Chen, F. Efficient second harmonic generation in a reverse-polarization dual-layer crystalline thin film nanophotonic waveguide.Laser Photonics Rev.15, 2100409 (2021)..
Du, H., Zhang, X., Wang, L.&Chen, F. Highly efficient, modal phase-matched second harmonic generation in a double-layered thin film lithium niobate waveguide.Opt. Express31, 9713–9726 (2023)..
Du, H., Zhang, X., Wang, L., Jia, Y.&Chen, F. Tunable sum-frequency generation in modal phase-matched thin film lithium niobate rib waveguides.Opt. Lett.48, 3159–3162 (2023)..
Zhang, Z. et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes.npj Quantum Inf.7, 123 (2021)..
Arahira, S., Namekata, N., Kishimoto, T.&Inoue, S. Experimental studies in generation of high-purity photon-pairs using cascadedχ(2) processes in a periodically poled linbo 3 ridge-waveguide device.JOSA B29, 434–442 (2012)..
Arahira, S., Namekata, N., Kishimoto, T., Yaegashi, H.&Inoue, S. Generation of polarization entangled photon pairs at telecommunication wavelength using cascadedχ(2) processes in a periodically poled linbo3ridge waveguide.Opt. Express19, 16032–16043 (2011)..
Hunault, M., Takesue, H., Tadanaga, O., Nishida, Y.&Asobe, M. Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled linbo 3 waveguide.Opt. Lett.35, 1239–1241 (2010)..
Elkus, B. S., Abdelsalam, K., Fathpour, S., Kumar, P.&Kanter, G. S. Quantum-correlated photon-pair generation via cascaded nonlinearity in an ultra-compact lithium-niobate nano-waveguide.Opt. Express28, 39963–39975 (2020)..
Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides.Optica5, 1438–1441 (2018)..
Pliska, T., Fluck, D., Günter, P., Beckers, L.&Buchal, C. Linear and nonlinear optical properties of knbo 3 ridge waveguides.J. Appl. Phys.84, 1186–1195 (1998)..
Stanton, E. J. et al. Efficient second harmonic generation in nanophotonic gaas-on-insulator waveguides.Opt. Express28, 9521–9532 (2020)..
Guo, X., Zou, C. -L.&Tang, H. X. Second-harmonic generation in aluminum nitride microrings with 2500%/w conversion efficiency.Optica3, 1126–1131 (2016)..
Lukin, D. M. et al. 4h-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics.Nat. Photonics14, 330–334 (2020)..
Guo, K. et al. Nonclassical optical bistability and resonance-locked regime of photon-pair sources using silicon microring resonator.Phys. Rev. Appl.11, 034007 (2019)..
Faruque, I. I. et al. Estimating the indistinguishability of heralded single photons using second-order correlation.Phys. Rev. Appl.12, 054029 (2019)..
Zielnicki, K. et al. Joint spectral characterization of photon-pair sources.J. Mod. Opt.65, 1141–1160 (2018)..
Signorini, S.&Pavesi, L. On-chip heralded single photon sources.AVS Quant. Sci.2, 041701 (2020)..
Xin, C. et al. Spectrally separable photon-pair generation in dispersion engineered thin-film lithium niobate.Opt. Lett.47, 2830–2833 (2022)..
Clemmen, S. et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators.Opt. Express17, 16558–16570 (2009)..
Du, J. et al. Demonstration of a low loss, highly stable and re-useable edge coupler for high heralding efficiency and low g (2)(0) soi correlated photon pair sources.Opt. Express32, 11406–11418 (2024)..
Guo, K. et al. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide.Appl. Phys. Express10, 062801 (2017)..
Choi, J. W., Sohn, B. -U., Chen, G. F., Ng, D. K.&Tan, D. T. Correlated photon pair generation in ultra-silicon-rich nitride waveguide.Opt. Commun.463, 125351 (2020)..
Mahmudlu, H., May, S., Angulo, A., Sorel, M.&Kues, M. Algaas-on-insulator waveguide for highly efficient photon-pair generation via spontaneous four-wave mixing.Opt. Lett.46, 1061–1064 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution